CONTENTS

PREFACE	xi
NOTATION	X111
INTRODUCTION	
\$1. The uncertainty principle in the relativistic case	1
I. PHOTONS	
§2. Quantisation of the free electromagnetic field	5
§3. Photons	9
§4. Gauge invariance	11
s. The angular momentum and parity of the photon	13
§7. Spherical waves of photons	17
§8. The polarisation of the photon	21
§9. A two-photon system	26
II. BOSONS	
\$10. The wave equation for particles with spin zero	29
§11. Particles and antiparticles	33
\$12. Strictly neutral particles	36
§13. The transformations C, P and T \$14. The wave equation for a particle with spin one	38
\$15. The wave equation for particles with higher integral spins	45
\$16. Helicity states of a particle	47
III. FERMIONS	
817 Four-dimensional spinors	53
\$18. The relation between spinors and 4-vectors	55
\$19. Inversion of spinors	58
\$20. Dirac's equation in the spinor representation	62
\$21. The symmetrical form of Dirac's equation	64
822. Algeora of Dirac matrices 823. Plane wayes	08 70
§24. Spherical waves	73
§25. The relation between the spin and the statistics	76
§26. Charge conjugation and time reversal of spinors	7 9
\$27. Internal symmetry of particles and antiparticles	83
828. Billinear forms 829. The polarisation density matrix	84
\$20. Neutrinos	69 93
\$31. The wave equation for a particle with spin $3/2$	96

v

Contents

IV. PARTICLES IN AN EXTERNAL FIELD

§32. Dirac's equation for an electron in an external field	98
33. Expansion in powers of $1/c$	107
§34. Fine structure of levels of the hydrogen atom	105
§35. Motion in a centrally symmetric field	107
§36. Motion in a Coulomb field	110
\$37. Scattering in a centrally symmetric field	115
\$38. Scattering in the ultra-relativistic case	117
§39. The continuous-spectrum wave functions for scattering in a Coulomb field	119
§40. An electron in the field of an electromagnetic plane wave	122
§41. Motion of spin in an external field	125
§42. Neutron scattering in an electric field	129

V. RADIATION

§43.	The electromagnetic interaction operator	131
§44.	Emission and absorption	133
§45.	Dipole radiation	135
§46.	Electric multipole radiation	137
§47.	Magnetic multipole radiation	141
§48.	Angular distribution and polarisation of the radiation	142
§49.	Radiation from atoms: the electric type	149
§50.	Radiation from atoms: the magnetic type	153
§51.	Radiation from atoms: the Zeeman and Stark effects	155
§52.	Radiation from atoms: the hydrogen atom	158
§53.	Radiation from diatomic molecules: electronic spectra	161
§54.	Radiation from diatomic molecules: vibrational and rotational spectra	167
§55.	Radiation from nuclei	168
§56.	The photoelectric effect: non-relativistic case	170
§57.	The photoelectric effect: relativistic case	174
§58.	Photodisintegration of the deuteron	177
§59.	Synchrotron radiation	180

VI. SCATTERING OF RADIATION

§60.	The scattering tensor	190
§61.	Scattering by freely oriented systems	196
§62.	Scattering by molecules	200
§63.	Natural width of spectral lines	203
§64.	Resonance fluorescence	207

VII. THE SCATTERING MATRIX

§65.	The scattering amplitude	211
§66.	Reactions involving polarised particles	215
§67.	Kinematic invariants	218
§68.	Physical regions	220
§69.	Expansion in partial amplitudes	226
§70.	Symmetry of helicity scattering amplitudes	228
§71.	Invariant amplitudes	233
§72.	The unitarity condition	237

Contents	vii
VIII. INVARIANT PERTURBATION THEORY	

§73.	The chronological product	241
§74.	Feynman diagrams for electron scattering	244
§75.	Feynman diagrams for photon scattering	249
§76.	The electron propagator	251
§77.	The photon propagator	254
§78.	General rules of the diagram technique	257
§79.	Crossing invariance	263
§80.	Virtual particles	264

IX. INTERACTION OF ELECTRONS

§81.	Scattering of an electron in an external field	269
§82.	Scattering of electrons and positrons by an electron	272
§83.	Breit's equation	280
§84.	Positronium	285
§85.	The interaction of atoms at large distances	289

X. INTERACTION OF ELECTRONS WITH PHOTONS

§86.	Scattering of a photon by an electron	295
§87.	Scattering of a photon by an electron. Polarisation effects	299
§88.	Two-photon annihilation of an electron pair	306
§89.	Annihilation of positronium	309
§90.	Electron-nucleus bremsstrahlung. The non-relativistic case	313
§91.	Electron-nucleus bremsstrahlung. The relativistic case	320
§92.	Pair production by a photon in the field of a nucleus	327
§93.	Exact theory of pair production and bremsstrahlung in the ultra-relativistic case	330
§94.	Electron-electron bremsstrahlung in the ultra-relativistic case	342
§95.	Emission of soft photons in collisions	346
§96.	The method of equivalent photons	351
§97.	Pair production in collisions between particles	356
§98.	Emission of a photon by an electron in the field of a strong electromagnetic wave	360

APPENDIX

201
371

INDEX

373