CONTENTS

		Page
	From the Preface to the first English edition	xi
	Preface to the second English edition	xii
	Notation	xiii
	I. THE BASIC CONCEPTS OF QUANTUM MECHANICS	
§1.	The uncertainty principle	1
§2.	The principle of superposition	6
§3.	Operators	8
§4.	Addition and multiplication of operators	13
§5.	The continuous spectrum	15
§6.	The passage to the limiting case of classical mechanics	20
§7.	The wave function and measurements	21
	II. ENERGY AND MOMENTUM	
§8.	The Hamiltonian operator	25
§9.	The differentiation of operators with respect to time	26
§10.	Stationary states	27
§11.	Matrices	30
§12.	Transformation of matrices	35
§13.	The Heisenberg representation of operators	37
§14.	The density matrix	38
§15.	Momentum	41
§16.	Uncertainty relations	46
	III. SCHRÖDINGER'S EQUATION	
§17.	Schrödinger's equation	50
§18.	The fundamental properties of Schrödinger's equation	53
§19.	The current density	55
§20.	The variational principle	58
§21.	General properties of motion in one dimension	60
§22.	The potential well	63
§23.	The linear oscillator	67
§24.	Motion in a homogeneous field	73
§25.	The transmission coefficient	75
	IV. ANGULAR MOMENTUM	
§26.		81
§27.	•	85
§28.	•	88
§29.	· ·	91
§30.		95
§31.	•	97

Contents

	V. MOTION IN A CENTRALLY SYMMETRIC FIELD	Page
§32.	Motion in a centrally symmetric field	101
§33.	Free motion (spherical polar co-ordinates)	104
§34.	Resolution of a plane wave	111
§35.	"Fall" of a particle to the centre	113
§36.	Motion in a Coulomb field (spherical polar co-ordinates)	116
§37.	Motion in a Coulomb field (parabolic co-ordinates)	125
	VI. PERTURBATION THEORY	
§38.	Perturbations independent of time	129
§39.	The secular equation	133
§40.	Perturbations depending on time	136
§41.	Transitions under a perturbation acting for a finite time	140
§42.	Transitions under the action of a periodic perturbation	146
§43.	Transitions in the continuous spectrum	147
§44.	The uncertainty relation for energy	150
§45.	Potential energy as a perturbation	153
	VII. THE QUASI-CLASSICAL CASE	
§46.	The wave function in the quasi-classical case	158
§47.	Boundary conditions in the quasi-classical case	161
§48.	Bohr and Sommerfeld's quantisation rule	162
§49.	Quasi-classical motion in a centrally symmetric field	167
§50.	Penetration through a potential barrier	171
§51.	Calculation of the quasi-classical matrix elements	177
§52.	The transition probability in the quasi-classical case	181
§53.	Transitions under the action of adiabatic perturbations	185
	VIII. SPIN	
§54.	Spin	188
§55.	Spinors	191
§56.	Spinors of higher rank	196
§57.	The wave functions of particles with arbitrary spin	198
§58.	The relation between spinors and tensors	200
§59.	Partial polarisation of particles	204
§60.	Time reversal and Kramers' theorem	206
	IX. IDENTITY OF PARTICLES	
§61.	The principle of indistinguishability of similar particles	209
§62.	Exchange interaction	212
§63.	Symmetry with respect to interchange	216
§64.	Second quantisation. The case of Bose statistics	221
§65.	Second quantisation. The case of Fermi statistics	227

vi

X. THE ATOM

	A. THE ATOM	Page
§66.	Atomic energy levels	231
§67.	Electron states in the atom	232
§68.	Hydrogen-like energy levels	236
§69.	The self-consistent field	237
§70.	The Thomas-Fermi equation	241
§71.	Wave functions of the outer electrons near the nucleus	246
§72.	Fine structure of atomic levels	247
§73.	The periodic system of D. I. Mendeleev	252
§74.	X-ray terms	259
§75.	Multipole moments	261
§76.	The Stark effect	265
§77.	The Stark effect in hydrogen	269

XI. THE DIATOMIC MOLECULE

§78.	Electron terms in the diatomic molecule	277
§79.	The intersection of electron terms	279
§80.	The relation between molecular and atomic terms	282
§81.	Valency	286
§82.	Vibrational and rotational structures of singlet terms in the diatomic molecule	293
§83.	Multiplet terms. Case a	299
§84.	Multiplet terms. Case b	303
§85.	Multiplet terms. Cases c and d	307
§86.	Symmetry of molecular terms	309
§87.	Matrix elements for the diatomic molecule	312
§88.	Λ -doubling	316
§89.	The interaction of atoms at large distances	319
§90.	Pre-dissociation	322

XII. THE THEORY OF SYMMETRY

§91.	Symmetry transformations	332
§92.	Transformation groups	335
§93.	Point groups	338
§94.	Representations of groups	347
§95.	Irreducible representations of point groups	354
§96.	Irreducible representations and the classification of terms	358
§97.	Selection rules for matrix elements	361
§98.	Continuous groups	364
§99.	Two-valued representations of finite point groups	367

Contents

XIII. POLYATOMIC MOLECULES

	i	Page
§100.	The classification of molecular vibrations	371
§101.	Vibrational energy levels	378
§102.	Stability of symmetrical configurations of the molecule	380
§103.	Quantisation of the rotation of a rigid body	383
§104.	The interaction between the vibrations and the rotation of the molecule	389
§105.	The classification of molecular terms	394

XIV. ADDITION OF ANGULAR MOMENTA

3j-symbols	401
Matrix elements of tensors	408
6 <i>j</i> -symbols	412
Matrix elements for addition of angular momenta	418
	Matrix elements of tensors 6j-symbols

XV. MOTION IN A MAGNETIC FIELD

§110.	Schrödinger's equation in a magnetic field	421
§111.	Motion in a uniform magnetic field	424
§112.	The Zeeman effect	427
§113.	Spin in a variable magnetic field	434
§114.	The current density in a magnetic field	435

XVI. NUCLEAR STRUCTURE

§115.	Isotopic invariance	438
§116.	Nuclear forces	442
§117.	The shell model	447
§118.	Non-spherical nuclei	456
§119.	Isotopic shift	461
§120.	Hyperfine structure of atomic levels	463
§121.	Hyperfine structure of molecular levels	466

XVII. THE THEORY OF ELASTIC COLLISIONS

§122.	The general theory of scattering	469
§123.	An investigation of the general formula	472
§124.	The unitary condition for scattering	475
§125.	Born's formula	479
§126.	The quasi-classical case	486
§127.	Scattering at high energies	489
§128.	Analytical properties of the scattering amplitude	492
§129.	The dispersion relation	497
§130.	The scattering of slow particles	500

Contents

8131	Resonance scattering at low energies	Page 505
-	Resonance at a quasi-discrete level	511
§133.	Rutherford's formula	516
§134.	The system of wave functions of the continuous spectrum	519
§135.	Collisions of like particles	523
§136.	Resonance scattering of charged particles	526
§137.	Elastic collisions between fast electrons and atoms	531
§138.	Scattering with spin-orbit interaction	535

XVIII. THE THEORY OF INELASTIC COLLISIONS

§139.	Elastic scattering in the presence of inelastic processes	542
§140.	Inelastic scattering of slow particles	548
§141.	The scattering matrix in the presence of reactions	550
§142.	Breit and Wigner's formula	554
§143.	Interaction in the final state in reactions	562
§144.	Behaviour of cross-sections near the reaction threshold	565
§145.	Inelastic collisions between fast electrons and atoms	571
§146.	The effective retardation	580
§147.	Inelastic collisions between heavy particles and atoms	584
§148.	Scattering by molecules	587

MATHEMATICAL APPENDICES

§a.	Hermite polynomials	593
§Ь.	The Airy function	596
§c.	Legendre polynomials	598
§d.	The confluent hypergeometric function	600
§e.	The hypergeometric function	605
§f.	The calculation of integrals containing confluent hypergeometric functions	607
INI	INDEX	

ix