Preface	•	•	•			•			\mathbf{v}
Translator's Preface .									vii
Contents	•								viii
Glossary of Symbols		•						•	xiii

PART ONE:

THE FOUNDATIONS OF QUANTUM THEORY

	Ir	ntro	duction	
I.	Q	uan	tum theory of free particles 5	j
	§	1.	Mass points in classical physics	5
	§	2.	The de Broglie quantum postulate for free mass	
			particles	3
	§	3.	Superposition of de Broglie waves 13	3
	§	4.	Properties of special wave-packets	1
	§	5.	The Heisenberg relations	l
	§	6.	The approximate validity of Newton's first law 25	5
	§	7.	The quantitative formulation of probability laws 27	7
	§	8.	The Schrödinger wave equation 33	3
	§	9.	The quantum theory of free particles and the	
			laws of conservation of momentum and energy 38	3
II.	N	on-1	relativistic quantum theory of bound particles. 4	1
	8	10.	Bound particles in classical physics 41	
	5 8	11.	The Schrödinger equation and its connexion with	
	3		the Hamilton equation	2
	Ş	12.	The motion of wave groups under the influence of	-
	J		external forces.	4
	ş	13.	The physical meaning of the wave function . 46	6
	ş	14.	Probability density and probability current	
	Ů		density \ldots \ldots \ldots \ldots \ldots 47	7
	ş	15.	The momentum probability distribution 49	9
	ş	16.	The uncertainty relations: the uncertainty in	
	U		energy	0
	ş	17.	Energy eigenvalues and eigenfunctions 5	1
	ş	18.	Stationary states	8
	-		-	

	§ 19.	The superposition principle in quantum mechan-
		1CS
	§ 20.	The representation of an arbitrary physical situa-
		tion as the superposition of stationary states . 64
	§ 21.	Degenerate stationary states; degree of de-
		generacy
	§ 22.	Unnormalisable eigenfunctions of free particles 68
	§ 23.	Improper stationary states in an external field of
		force
	§ 24.	. General discussion of eigenvalues and eigen-
		functions
	§ 25.	. Charged particles in an electromagnetic field . 84
III.	The	non-relativistic treatment of the many-body
	prob	lem
	§ 26	The two-body problem
	\$ 27	. The Schrödinger equation of many interacting
	3	particles 92
	\$ 28	The interpretation of the wave function 97
	s - 0 8 29	Operators 100
	8 30	The generalised Fhrenfest theorem 110
	8 31	The conservation of momentum
	8 32	Stationary states
	5 33	The law of conservation of energy: causality in
	2 00	quantum mechanics 190
IV.	Tran	sformation theory
	A. (General theory
	§ 34	. Coordinate transformations
	§ 35	. The definability of mechanical quantities 126
	§ 36	. Eigenvalues and eigenfunctions corresponding to
		an observable
	§ 37	. Eigenvalues and eigenfunctions of finite Hermi-
	-	tean matrices
	§ 38	. The eigenfunctions of commuting Hermitean
		operators
	§ 39	. The distribution function of an observable;
	-	probability amplitudes
	§ 40	Transformation of functions
	§ 41	. Transformation of operators; matrix represen-
	v	tation of an observable

 $\mathbf{i}\mathbf{x}$

	§ 42	2. The transformed Schrödinger equation	155
	§ 43	B. The time dependence of observables	158
	B. 1	Examples	
	§ 44	I. The probability distribution of coordinates and	
		momenta; the probability current density	162
	§ 45	5. The eigenvalues and eigenfunctions of the angular	
		momentum	168
	§ 46	6. A particle in a central field of force; the hydrogen	
		atom	180
v	Pert	urbation theory	188
••	C 45		100
	§ 47		188
	§ 48	3. The perturbation of a non-degenerate discrete	
		stationary state	189
	§ 49). The perturbation of a degenerate discrete sta-	
		tionary state	195
	§ 50). Perturbation theory and infinitesimal trans-	
	Ū	formations	198
	§ 51	. Method of approximate solutions; the variational	
	Ū	principle.	202
	§ 52	2. Expectation values and time averages	207
	§ 53	B. The method of the variation of constants	209
	§ 54	. Variable fields of force; adiabatic theorem	214
	\$ 55	5. Time proportional transition probabilities.	218
	5 50	r - r - r - r - r - r - r - r - r - r -	

PART TWO:

QUANTUM THEORY OF THE ELECTRON AND OF RADIATION

VI.	The s	spinning electron	224
	A. N	on-relativistic spin theory	
	§ 56.	Uhlenbeck and Goudsmit's hypothesis of the	
		rotating magnetic electron	224
	§ 57.	The classical description of the motion of a spin-	
		ning electron	226
	§ 58.	The non-relativistic quantum mechanical treat-	
		ment of spin	238
	§ 59.	The spinning electron in a central field of force	245
	§ 60.	Many electron systems	252
	§ 61.	Spinors and rotations in space	257

	§	62.	Gauge transformations	268
	В	. R	elativistic spin theory	
	§	63.	Relativistic spinor calculus	270
	§	64.	Derivation of the Dirac equations	278
	§	65.	Discussion of the Dirac equations	284
	§	66.	The electron in a central field of force according to	
	-		the Dirac theory	298
VII.	T	he e	exclusion principle	308
	§	67.	The Pauli principle for electrons	308
	ş	68.	Exclusion principles for other equivalent particles	311
	ş	69.	Permutations	314
	ş	70.	Stationary states of several independent elec-	
	0		trons in a common field of force: the shell struc-	
			ture of the atom	317
	8	71.	Quantum theory of N-electron systems	321
	3 8	72	Formulation of the many particle problem inde-	0-1
	3	• •	pendent of the number of particles	326
	8	73	Systems with two electrons without spin forces	334
	8	74	Systems with two electrons with spin forces	242
	8	75	Analysis of multiplet situations in the N electron	UTU
	8	10.	problem	250
	2	76	Pototions and angular momentum encreters	255
	8	70.	Multiplet situations (continued)	000 961
	8	11.	Stationary status of N alexandrous south and	301
	8	18.	spin forces	372
	8	79	N-electron systems with spin forces: Russell-	012
	3		Saunders coupling	381
	2	80	Coupling of many electron systems: homonolar	001
	8	80,	coupling of many electron systems, nonopolar	280
			chemical bonds	209
VIII.	E	lect	romagnetic radiation	393
	§	81.	Quantum theory of radiation and quantum	
	•		electrodynamics	393
	ş	82.	The unquantised radiation field; absorption of	
	Ŭ		radiation	395
	8	83.	The insufficiency of an unquantised radiation	
	ა		theory: classical theory of the emission of ra-	
			diation	404
	8	84	The "semi-classical" theory of spontaneous	
	3	51,	transitions	409
				200

xi

§	85.	Emission of radiation and correspondence prin-	
		ciple	414
§	86.	The radiation field in vacuo as a canonical	
		system	418
§	87.	Quantisation of the radiation field; light quanta	422
§	88.	Field theory and corpuscular theory of radiation	43 6
§	89.	The equations of the classical theory of electron	s
		in canonical form	441
§	90.	Quantum theory of the interaction between ra-	
		diation and matter	453
§	91.	Theory of emission and absorption	457
§	92.	Scattering processes	467
§	93.	Conservation of momentum in scattering pro-	
		cesses; Compton effect	474
§	94.	Semi-classical theory of scattering processes	48 0
§	95.	Coherent scattering; dispersion	482
Iı	ndex	٤	491

xii