CONTENTS

1	THE	RMAL RADIATION AND PLANCK'S POSTULATE	1
	1-1	Introduction	2
	1-2	Thermal Radiation	2
		Classical Theory of Cavity Radiation	6
		Planck's Theory of Cavity Radiation	13
		The Use of Planck's Radiation Law in Thermometry	19
		Planck's Postulate and Its Implications	20
	1-7	A Bit of Quantum History	21
2	PHO	OTONS—PARTICLELIKE PROPERTIES OF RADIATION	26
	2-1	Introduction	27
	2-2	The Photoelectric Effect	27
		Einstein's Quantum Theory of the Photoelectric Effect	29
		The Compton Effect	34
		The Dual Nature of Electromagnetic Radiation	40
		Photons and X-Ray Production	40
		Pair Production and Pair Annihilation	43
	2-8	Cross Sections for Photon Absorption and Scattering	48
3		BROGLIE'S POSTULATE—WAVELIKE PROPERTIES	FF
	OF	PARTICLES	55
		Matter Waves	56
		The Wave-Particle Duality	62
		The Uncertainty Principle	65
		Properties of Matter Waves	69
		Some Consequences of the Uncertainty Principle	77
	3-6	The Philosophy of Quantum Theory	79
4	во	HR'S MODEL OF THE ATOM	85
	4-1	Thomson's Model	86
	4-2	Rutherford's Model	90
	4-3	The Stability of the Nuclear Atom	95
	4-4	Atomic Spectra	96
	4-5	Bohr's Postulates	98
	4-6	Bohr's Model	100
	4-7	Correction for Finite Nuclear Mass	105
	4-8	Atomic Energy States	107
	4-9	Interpretation of the Quantization Rules	110
) Sommerfeld's Model	114
		The Correspondence Principle	117
	4-12	2 A Critique of the Old Quantum Theory	118

J	SCHROEDINGER'S THEORY OF QUANTUM MECHANICS	124
	5-1 Introduction	125
	5-2 Plausibility Argument Leading to Schroedinger's Equation	128
	5-3 Born's Interpretation of Wave Functions	134
	5-4 Expectation Values	141
	5-5 The Time-Independent Schroedinger Equation	150
	5-6 Required Properties of Eigenfunctions	155
	5-7 Energy Quantization in the Schroedinger Theory	157
	5-8 Summary	165
6	SOLUTIONS OF TIME-INDEPENDENT	486
	SCHROEDINGER EQUATIONS	176
	6-1 Introduction	177
	6-2 The Zero Potential	178
	6-3 The Step Potential (Energy Less Than Step Height)	184
	6-4 The Step Potential (Energy Greater Than Step Height)	193
	6-5 The Barrier Potential	199
	6-6 Examples of Barrier Penetration by Particles	205
	6-7 The Square Well Potential	209
	6-8 The Infinite Square Well Potential	214
	6-9 The Simple Harmonic Oscillator Potential 6-10 Summary	221 225
	0-10 Summary	223
7	ONE-ELECTRON ATOMS	232
	7-1 Introduction	233
	7-2 Development of the Schroedinger Equation	234
	7-3 Separation of the Time-Independent Equation	235
	7-4 Solution of the Equations	237
	7-5 Eigenvalues, Quantum Numbers, and Degeneracy	239
	7-6 Eigenfunctions	242
	7-7 Probability Densities	244
	7-8 Orbital Angular Momentum	254
	7-9 Eigenvalue Equations	259
8	MAGNETIC DIPOLE MOMENTS, SPIN, AND TRANSITION RATES	266
	8-1 Introduction	267
	8-2 Orbital Magnetic Dipole Moments	267
	8-3 The Stern-Gerlach Experiment and Electron Spin	272
	8-4 The Spin-Orbit Interaction	278
	8-5 Total Angular Momentum	281
	8-6 Spin-Orbit Interaction Energy and the Hydrogen Energy Levels	284
	8-7 Transition Rates and Selection Rules	288
	8-8 A Comparison of the Modern and Old Quantum Theories	295
9	MULTIELECTRON ATOMS—GROUND STATES AND	
	X-RAY EXCITATIONS	300
	9-1 Introduction	301
	9-2 Identical Particles	302
	9-3 The Exclusion Principle	308
	9-4 Exchange Forces and the Helium Atom	310
	9-5 The Hartree Theory	319

	9-6	Results of the Hartree Theory	322
	9-7	Ground States of Multielectron Atoms and the Periodic Table	331
	9-8	X-Ray Line Spectra	337
10	MUL	TIELECTRON ATOMS—OPTICAL EXCITATIONS	347
	10-1	Introduction	348
	10-2	Alkali Atoms	349
		Atoms with Several Optically Active Electrons	352
		LS Coupling	356
		Energy Levels of the Carbon Atom	361
		The Zeeman Effect	364
	10-7	Summary	, 370
11	QUANTUM STATISTICS		375
		Introduction	376
		Indistinguishability and Quantum Statistics	377
		The Quantum Distribution Functions	380
		Comparison of the Distribution Functions	384
		The Specific Heat of a Crystalline Solid	388
	11-6	The Boltzmann Distributions as an Approximation to Quantum	
		Distributions	391
		The Blader Con	392
		The Photon Gas	398
		The Phonon Gas	399 399
		0 Bose Condensation and Liquid Helium 1 The Free Electron Gas	404
		2 Contact Potential and Thermionic Emission	407
		3 Classical and Quantum Descriptions of the State of a System	409
12	МО	LECULES	415
	12-1	Introduction	416
		Ionic Bonds	416
		Covalent Bonds	418
		Molecular Spectra	422
		Rotational Spectra	423
		Vibration-Rotation Spectra	426
		Electronic Spectra	429
		The Raman Effect	432
	12-9	Determination of Nuclear Spin and Symmetry Character	434
13	SOI	LIDS—CONDUCTORS AND SEMICONDUCTORS	442
	13-1	Introduction	443
	13-2	Types of Solids	443
	13-3	Band Theory of Solids	445
		Electrical Conduction in Metals	450
		The Quantum Free-Electron Model	452
	13-6		456
		Effective Mass	460
		Electron-Positron Annihilation in Solids	464
		Semiconductors	467 477
	127	0 Semiconductor Devices	47

≡	14	SOLIDS—SUPERCONDUCTORS AND MAGNETIC PROPERTIES	483
ν ·		14-1 Superconductivity	484
Z		14-2 Magnetic Properties of Solids	492
		14-3 Paramagnetism	493
CONTENTS		14-4 Ferromagnetism	497
J		14-5 Antiferromagnetism and Ferrimagnetism	503
	15	NUCLEAR MODELS	508
		15-1 Introduction	509
		15-2 A Survey of Some Nuclear Properties	510
		15-3 Nuclear Sizes and Densities	515
		15-4 Nuclear Masses and Abundances	519
		15-5 The Liquid Drop Model	526
		15-6 Magic Numbers	530
		15-7 The Fermi Gas Model	531
		15-8 The Shell Model	534
		15-9 Predictions of the Shell Model	540
		15-10 The Collective Model	545
		15-11 Summary	549
	16	NUCLEAR DECAY AND NUCLEAR REACTIONS	554
		16-1 Introduction	555
		16-2 Alpha Decay	555
		16-3 Beta Decay	562
		16-4 The Beta-Decay Interaction	572
		16-5 Gamma Decay	578
		16-6 The Mössbauer Effect	584
		16-7 Nuclear Reactions	588
		16-8 Excited States of Nuclei	598
		16-9 Fission and Reactors16-10 Fusion and the Origin of the Elements	602 607
	17	INTRODUCTION TO ELEMENTARY PARTICLES	617
		17-1 Introduction	618
		17-2 Nucleon Forces	618
		17-3 Isospin	631
		17-4 Pions	634
		17-5 Leptons	641
		17-6 Strangeness	643
		17-7 Families of Elementary Particles17-8 Observed Interactions and Conservation Laws	649 653
	18	MORE ELEMENTARY PARTICLES	666
		18-1 Introduction	667
		18-2 Evidence for Partons	667
		18-3 Unitary Symmetry and Quarks	673
		18-4 Extensions of SU(3)—More Quarks18-5 Color and the Color Interaction	678 683
		18-5 Color and the Color Interaction 18-6 Introduction to Gauge Theories	688
		18-7 Quantum Chromodynamics	691
		18-8 Electroweak Theory	699
		18-9 Grand Unification and the Fundamental Interactions	706

Appendix A	The Special Theory of Relativity
Appendix B	Radiation from an Accelerated Charge
Appendix C	The Boltzmann Distribution
Appendix D	Fourier Integral Description of a Wave Group
Appendix E	Rutherford Scattering Trajectories
Appendix F	Complex Quantities
Appendix G	Numerical Solution of the Time-Independent Schroedinger
• •	Equation for a Square Well Potential
Appendix H	Analytical Solution of the Time-Independent Schroedinger
• •	Equation for a Square Well Potential
Appendix I	Series Solution of the Time-Independent Schroedinger
	Equation for a Simple Harmonic Oscillator Potential
Appendix J	Time-Independent Perturbation Theory
Appendix K	Time-Dependent Perturbation Theory
Appendix L	The Born Approximation
Appendix M	The Laplacian and Angular Momentum Operators in
	Spherical Polar Coordinates
Appendix N	Series Solutions of the Angular and Radial Equations for
	a One-Electron Atom
Appendix O	The Thomas Precession
Appendix P	The Exclusion Principle in LS Coupling
Appendix Q	Crystallography
Appendix R	Gauge Invariance in Classical and Quantum Mechanical
	Electromagnetism
Appendix S	Answers to Selected Problems
Index	