INTRODUCTION	i
I. CLASSICAL THEORY OF RADIATION	
 § 1. THE GENERAL MAXWELL-LORENTZ THEORY	L
 § 2. LORENTZ INVARIANCE, MOMENTUM, AND ENERGY OF THE FIELD . 7 1. LORENTZ transformations. 2. Invariance of the Maxwell equations. 3. The Lorentz force. Momentum and energy of a particle. 4. Non- electromagnetic nature of the inertial mass. 5. 'Particle properties' of light waves. 	r
 § 3. FIELD OF A POINT CHARGE AND EMISSION OF LIGHT	3
 § 4. REACTION OF THE FIELD, LINE BREADTH	5
 § 5. SCATTERING, ABSORPTION	F
 § 6. THE FIELD AS A SUPERPOSITION OF PLANE WAVES. HAMILTONIAN FORM OF THE FIELD EQUATIONS	3
II. QUANTUM THEORY OF THE PURE RADIATION FIELD	
 § 7. QUANTIZATION OF THE RADIATION FIELD	£
 § 8. δ, Δ AND RELATED FUNCTIONS	3
 § 9. COMMUTATION AND UNCERTAINTY RELATIONS OF THE FIELD STRENGTHS 1. Commutation relations of the field strengths in coordinate space. 2. Uncertainty relations for the field strengths. 3. Measurements of the average value of a field strength. 4. Measurement of two field strengths. 	3

§ 10. QUANTIZATION OF THE LONGITUDINAL AND SCALAR FIELDS 1. Expansions and commutation relations. 2. Quantization by in- definite metric. 3. The Lorentz condition. 4. Gauge invariance. 5. Four-dimensional Fourier expansion. Commutation relations of A_{α} . 6. Photon vacuum, expectation values.	87
III. THE ELECTRON FIELD AND ITS INTERACTION WITH RADIATION	-
 § 11. THE RELATIVISTIC WAVE EQUATION OF THE ELECTRON 1. Dirac's equation. 2. Spin summations. 3. Transition to non-relativistic case. 4. The hole theory. 	104
§ 12. SECOND QUANTIZATION OF THE ELECTRON FIELD 1. Second quantization of a single electron wave. 2. Set of electron waves. 3. Anti-commutation relations for ψ . 4. The current and energy densities.	114
 § 13. ELECTRONS INTERACTING WITH RADIATION	124
IV. METHODS OF SOLUTION	
 §14. ELEMENTARY PERTURBATION THEORY I. General considerations. 2. Transition probability and energy change. 3. Matrix elements. 	136
 § 15. GENERAL PERTURBATION THEORY: FREE PARTICLES 1. Time-dependent canonical transformation. 2. Energy representation, self-energies. 3. Solution of the wave-equation. 	145
 § 16. GENERAL THEORY OF DAMPING PHENOMENA 1. General solutions. 2. Transition probabilities. 3. Level displacements. 	163
V. RADIATION PROCESSES IN FIRST APPROXIMATIO	N
 § 17. EMISSION AND ABSORPTION	175
 § 18. THEORY OF THE NATURAL LINE BREADTH 1. Atom with two states. 2. Several atomic states. 3. Absorption. 4. Other causes for the line breadth. 5. Experimental check. 	181
 § 19. DISPERSION AND RAMAN EFFECT	189
§ 20. RESONANCE FLUORESCENCE	196

viii

§21. Photoelectric Effect	204
1. Non-relativistic case, great distances from absorption edge. 2. Neighbourhood of absorption edge. 3. Relativistic region.	
§ 22. Scattering by Free Electrons	211
 The Compton formula. Intermediate states, transition probability. Deduction of the Klein-Nishina formula. Polarization, angular distribution. Recoil electrons. Total scattering. 	
 § 23. MULTIPLE PROCESSES	224
 § 24. THE SCATTERING OF TWO ELECTRONS	231
 § 25. BREMSSTRAHLUNG	242
 § 26. CREATION OF POSITIVE ELECTRONS	256
§ 27. The Annihilation of Positive Electrons 1. The two-quanta annihilation. 2. Experimental evidence. 3. One- quantum annihilation. 4. Positronium.	268
VI. RADIATIVE CORRECTIONS, AMBIGUOUS FEATUR	\mathbf{ES}
 § 28. GENERAL EVALUATION OF THE MATRIX ELEMENT 1. The interaction diagrams. 2. Evaluation of a particular interaction diagram. 3. Singular cases. 4. Vacuum fluctuations. 	278
 \$ 29. THE SELF-ENERGY OF THE ELECTRON	293
 § 30. ELECTRON IN AN EXTERNAL FIELD	3 05
 § 31. THE ANOMALOUS MAGNETIC MOMENT OF THE ELECTRON 1. Electron at rest in a magnetic field. 2. Evaluation of the excess magnetic moment. 3. Measurements. 	311
 § 32. VACUUM POLARIZATION	316

ix

§ 33. CORRECTIONS TO THE COMPTON EFFECT	327
§ 34. RADIATIVE CORRECTIONS TO BOUND STATES	337
§ 35. FURTHER OUTLOOK	354
VII. PENETRATING POWER OF HIGH-ENERGY RADIATION	
§ 36. ABSORPTION COEFFICIENT OF γ -RAYS	362
§ 37. STOPPING POWER OF MATTER FOR FAST PARTICLES 1. Average energy loss by inelastic collisions (gases). 2. Polarization effect. 3. Total energy loss. 4. Average range. 5. Straggling. 6. Comparison with experiments. Discovery of the μ -meson. 7. Annihilation probability of positrons.	367
§ 38. CASCADE SHOWERS	386
 APPENDIX	401
LIST OF REFERENCES	423
SUBJECT INDEX	426

x