Contents

1.	Symmetries in Quantum Mechanics					
	1.1	Symmetries in Classical Physics	1			
	1.2	Spatial Translations in Quantum Mechanics	18			
	1.3	The Unitary Translation Operator	19			
	1.4	The Equation of Motion for States Shifted in Space	20			
	1.5	Symmetry and Degeneracy of States	22			
	1.6	Time Displacements in Quantum Mechanics	30			
	1.7	Mathematical Supplement: Definition of a Group	32			
	1:8	Mathematical Supplement:				
	•	Rotations and their Group Theoretical Properties	35			
	1.9	An Isomorphism of the Rotation Group	37			
		1.9.1 Infinitesimal and Finite Rotations	39			
		1.9.2 Isotropy of Space	41			
	1.10	The Rotation Operator for Many-Particle States	50			
	1.11	Biographical Notes	51			
2.	Angular Momentum Algebra Representation					
44.	ngular Momentum Operators — Generators of SO(3)	53				
	2.1.	Irreducible Representations of the Rotation Group	53			
	2.1.	Matrix Representations of Angular Momentum Operators	57			
	2.2	Addition of Two Angular Momenta	66			
	2.4	Evaluation of Clebsch-Gordan Coefficients.	70			
	2.5	Recursion Relations for Clebsch-Gordan Coefficients	71			
	2.6	Explicit Calculation of Clebsch-Gordan Coefficients	72			
	2.0	Biographical Notes	79			
	2.1		19			
3.		hematical Supplement: Fundamental Properties of Lie Groups .	81			
	3.1	General Structure of Lie Groups	81			
	3.2	Interpretation of Commutators as Generalized Vector				
		Products, Lie's Theorem, Rank of Lie Group	91			
	3.3	Invariant Subgroups, Simple				
		and Semisimple Lie Groups, Ideals	93			
	3.4	Compact Lie Groups and Lie Algebras	101			
	3.5	Invariant Operators (Casimir Operators)	101			
	3.6	Theorem of Racah	102			
	3.7	Comments on Multiplets	102			
	3.8	Invariance Under a Symmetry Group	104			

j

	3.9	Construction of the Invariant Operators	108
	3.10	Remark on Casimir Operators of Abelian Lie Groups	110
	3.11	Completeness Relation for Casimir Operators	110
	3.12	Review of Some Groups and Their Properties	112
	3.13	The Connection Between Coordianate Transformations	
		and Transformations of Functions	113
	3.14	Biographical Notes	126
		5. F	120
4.	Sym	metry Groups and Their Physical Meaning	
	-Gei	neral Considerations	127
	4.1	Biographical Notes	132
5.	The	Isospin Group (Isobaric Spin)	133
	5.1	Isospin Operators for a Multi-Nucleon System	139
	5.2	General Properties of Representations of a Lie Algebra	146
	5.3	Regular (or Adjoint) Representation of a Lie Algebra	148
	5.4	Transformation Law for Isospin Vectors	152
	5.5	Experimental Test of Isospin Invariance	159
	5.6	Biographical Notes	174
6.		Hypercharge	175
	6.1	Biographical Notes	181
_			
7.		SU(3) Symmetry	183
	7.1	The Groups $U(n)$ and $SU(n)$	183
	7.0	7.1.1. The Generators of $U(n)$ and $SU(n)$	185
	7.2	The Generators of SU(3)	187
	7.3	The Lie Algebra of SU(3)	190
	7.4	The Subalgebras of the SU(3)-Lie Algebra	
	7.5	and the Shift Operators	198
		Coupling of T-, U- and V-Multiplets	201
	7.6 7.7	Quantitative Analysis of Our Reasoning	202
	1.1	Further Remarks About the Geometric Form	• • • •
	7.8	of an SU(3) Multiplet	204
	/.0	The Number of States on Mesh Points on Inner Shells	205
8.	Quar	ks and SU(3)	217
0.	81	Searching for Quarks	217
	8.2	The Transformation Properties of Quark States	219
	8.3	Construction of all SU(3) Multiplets	220
	0.5	from the Elementary Representations [3] and $[\overline{3}]$	226
	8.4		226
	0.4	Construction of the Representation $D(p, q)$ from Quarks and Antiquarks	220
		from Quarks and Antiquarks	228
	8.5	() 1	231
	8.5 8.6	Meson Multiplets	240
	0.0	Rules for the Reduction of Direct Products	.
		of SU(3) Multiplets	244

		Сог	ntents	XIII
	8.7	U-spin Invariance	248	
	8.8	Test of U-spin Invariance	250	
	8.9	The Gell-Mann-Okubo Mass Formula	252	
	8.10	The Clebsch-Gordan Coefficients of the SU(3)	254	
	8.11	Quark Models with Inner Degrees of Freedom	257	
	8.12	The Mass Formula in SU(6)	283	
	8.13	Magnetic Moments in the Quark Model	284	
	8.14	Excited Meson and Baryon States	286	
		8.14.1 Combinations of More Than Three Quarks	286	
	8.15	Excited States with Orbital Angular Momentum	288	
9.	Repr	resentations of the Permutation Group and Young Tableaux	291	
	9.1	The Permutation Group and Identical Particles	291	
	9.2	The Standard Form of Young Diagrams	295	
	9.3	Standard Form and Dimension of Irreducible		
		Representations of the Permutation Group S_N	297	
	9.4	The Connection Between SU(2) and S_2	307	
	9.5	The Irreducible Representations of $SU(n)$	310	
	9.6	Determination of the Dimension	316	
	9.7	The $SU(n-1)$ Subgroups of $SU(n)$	320	
	9.8	Decomposition of the Tensor Product of Two Multiplets	322	
	2.0		022	
10.		ematical Excursion. Group Characters	327	
	10.1	Definition of Group Characters	327	
	10.2	Schur's Lemmas	328	
		10.2.1 Schur's First Lemma	328	
		10.2.2 Schur's Second Lemma	328	
	10.3	Orthogonality Relations of Representations		
		and Discrete Groups	329	
	10.4	Equivalence Classes	331	
	10.5	Orthogonality Relations of the Group Characters		
		for Discrete Groups and Other Relations	334	
	10.6	Orthogonality Relations of the Group Characters		
		for the Example of the Group D_3	334	
	10.7	Reduction of a Representation	336	
	10.8	Criterion for Irreducibility	337	
	10.9	Direct Product of Representations	337	
	10.10	Extension to Continuous, Compact Groups	338	
	10.11	Mathematical Excursion: Group Integration	339	
	10.12	Unitary Groups	340	
	10.13	The Transition from $U(N)$ to $SU(N)$		
٠		for the Example SU(3)	342	
	10.14	Integration over Unitary Groups	344	
		Group Characters of Unitary Groups	347	
11	Char		265	
11.		n and SU(4)	365	
	11.1	Particles with Charm and the SU(4)	367	

Contents

	11.2	The Group Properties of SU(4)	367
	11.3	Tables of the Structure Constants f_{ijk}	
		and the Coefficients d_{ijk} for SU(4)	376
	11.4	Multiplet Structure of SU(4)	378
	11.5	Advanced Considerations	385
		11.5.1 Decay of Mesons with Hidden Charm	385
		11.5.2 Decay of Mesons with Open Charm	386
		11.5.3 Baryon Multiplets	387
	11.6	The Potential Model of Charmonium	398
	11.7	The SU(4) [SU(8)] Mass Formula	406
	11.8	The Y Resonances	409
10	20.0		
12.		ematical Supplement	413
	12.1	Introduction	413
	12.2	Root Vectors and Classical Lie Algebras	417
	12.3	Scalar Products of Eigenvalues	421
	12.4	Cartan-Weyl Normalization	424
	12.5	Graphic Representation of the Root Vectors	424
	12.6	Lie Algebra of Rank 1	425
	12.7	Lie Algebras of Rank 2	426
	12.8	Lie Algebras of Rank $l > 2$	426
	12.9	The Exceptional Lie Algebras	427
		Simple Roots and Dynkin Diagrams	428
	12.11	Dynkin's Prescription	430
	12.12	The Cartan Matrix	432
	12.13	Determination of all Roots from the Simple Roots	433
		Two Simple Lie Algebras	435
	12.15	Representations of the Classical Lie Algebras	436
13.	Specia	al Discrete Symmetries	441
	13.1	Space Reflection (Parity Transformation)	441
	13.2	Reflected States and Operators	443
	13.3	Time Reversal	444
	13.4	Antiunitary Operators	445
	13.5	Many-Particle Systems	450
	13.6	Real Eigenfunctions	451
14.	Dyna	mical Symmetries	453
	14.1	The Hydrogen Atom	453
	14.2	The Group SO(4)	455
	14.3	The Energy Levels of the Hydrogen Atom	456
	14.4	The Classical Isotropic Oscillator	458
		14.4.1 The Quantum Mechanical Isotropic Oscillator	458

<u>. </u>	Co	ntents	XV
15. Mat	hematical Excursion: Non-compact Lie Groups	473	
	Definition and Examples of Non-compact Lie Groups		
15.2	The Lie Group SO(2,1)	480	
15.3	Application to Scattering Problems	484	
Subj	ect Index	489	