CONTENTS

Preface	xi
Acknowledgments	xv

PART I ELEMENTARY QUANTUM THEORY

Chapter	1 An Introduction to Quantum Mechanics	
1	Wave–Particle Duality	1
2	Classical Wave Motion	12
3	Periodic Boundary Conditions and Complex Fourier	
	Components	18
4	Fourier Series and Fourier Integrals	22
5	Wave Nature of Particles	30
6	Development of the Time-Dependent and Time-	
	Independent Schrödinger Wave Equations	45
7	Wave-Packet Solutions and the Uncertainty Relation	55
8	Expectation Values for Quantum-Mechanical	
	Operators	70
9	Probability Current Density	85
10	Energy Levels and Density of States	87
11	Reflection and Transmission Coefficients for a Particle	
	Beam at a Potențial-Energy Step Discontinuity and at	
	a Rectangular Barrier	94
12	Bound-State Problems	113
	Problems	133
	Answers to Multiple Choice Problems	145

PART II QUANTUM STATISTICS OF MANY-PARTICLE SYSTEMS; FORMULATION OF THE FREE-ELECTRON MODEL FOR METALS

Chapter 2 Many-Particle Systems and Quantum Statistics

.

1	Wave Functions for a Many-Particle System	146
2	Statistics for a Many-Particle System	166
	Problems	185

Chapter 3 Free-Electron Model and the Boltzmann Equation 1 Free-Electron Gas in Three Dimensions 188 2 Electronic Specific Heat 200 3 Electrical Conductivity and the Derivation of Ohm's 209 Law 4 Thermal Electron Emission from Metals 213 5 General Method for Evaluating Statistical Quantities Involving Fermi-Dirac Statistics 217 6 The Temperature Dependence of the Fermi Energy and Other Applications of the General Approximation Technique 221 7 The Boltzmann Equation 225 Problems 235

PART III APPROXIMATION TECHNIQUES FOR THE SCHRÖDINGER EQUATION

Chapter	4 The WKB Approximation and Electron Tunneling	
1	Development of the WKB Approximation	237
2	Application of the WKB Technique to Barrier	
	Penetration	241
3	Tunneling in Metal-Insulator-Metal Structures	246
4	Tunnel Current at 0°K between Two Metals Separated	
	by a Rectangular Barrier	256
5	Tunnel Current at 0°K for Barriers of Arbitrary Shape	260
6	Temperature Dependence of the Electron Tunnel	
	Current	265
7	Applications of Electron Tunneling	268

Chapter	5 Perturbation Theory, Diffraction of Valence Electrons,	
_	and the Nearly-Free-Electron Model	
1	Stationary-State Perturbation Theory	279
2	Elementary Treatment of Diagonalization	286
3	Higher-Order Perturbations and Applications	290
4	Degenerate Case for Second-Order Treatment	294
5	Removal of Degeneracy in Second Order	294
6	Time-Dependent Perturbation Theory	298
7	Example: Harmonic Perturbation	301
8	Example: Constant Perturbation in First Order	306
9	Example: Constant Perturbation in Second Order	307
10	Transition Probability and Fermi's Golden Rule	308
11	Differential Cross Section for Scattering	311
12	Diffraction of Electrons by the Periodic Potential	
	of a Crystal	313
13	Diffraction of Conduction Electrons	
	and the Nearly-Free-Electron Model	317
14	Differential Scattering Cross Section for Plane-Wave	
	States and a Coulomb Potential	327
	Problems	332

PART IV ENERGY BANDS IN CRYSTALS

Chapter	6 The Periodicity of Crystalline Solids	
1	Generalities	334
2	Unit Cells and Bravais Lattices	336
3	Miller Indices and Crystal Directions	341
4	Some Specific Crystal Structures	343
5	Crystal Bonding	343
6	The Reciprocal Lattice: Fourier Space for Arbitrary	
	Functions That Have the Lattice Periodicity	344
7	Wigner-Seitz Cell	352
8	First Brillouin Zone	353
9	Higher Brillouin Zones	354
	Problems	354

Chapter 7 Bloch's Theorem and Energy Bands for a Periodic Potential

1	Fourier Series Expansions for Arbitrary Functions	
	of Position within the Crystal	357

X CONTENTS

2	The Periodic Potential Characteristic of the Perfect	
	Monocrystal	369
3	The Hamiltonian for an Electron in a Periodic	
	Potential	372
4	Fourier Series Derivation of Bloch's Theorem	373
5	Properties of Bloch Functions	382
6	Correspondence with the Free-Electron Model	390
7	Additional Properties of Bloch Functions	405
8	Energy Bands from the Viewpoint of the One-Electron	
	Atomic Levels	408
9	Energy Gaps and Energy Bands: Insulators,	
	Semiconductors, and Metals	409
	Problems	411
		412
Append	ix Physical Constants: Symbols, Units, and Values	413
References		414
Referen		414
Index		417