目 次

はじめに

第	T	部	序	論
7			7.11	TIHH!

0 量-	予力学の形成	江沢	洋,	恒藤敏彦	
§ 0. 1	二つの出発,行列力学と波動力学・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				3
§ 0. 2	ϕ とはなにか——変換理論 · · · · · · · · · · · · · · · · · · ·				5
§ 0. 3	粒子の統計性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • • • •			9
§ 0. 4	同種粒子系の量子力学――対称性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				13
§ 0. 5	粒子と波動 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				15
§ 0. 6	スピンと軌道状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
§ 0. 7	固体電子論 · · · · · · · · · · · · · · · · · · ·				
§ 0. 8	原子核の問題 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
§ 0. 9	相対論的量子力学へ				
§ 0. 10	量子電磁力学と宇宙線現象・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
§ 0. 11	素粒子論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
§ 0. 12	場の理論の適用限界?・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
§ 0. 13	素粒子論の転回・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • • • •	• • • • •	• • • • • • • • • • • • • • • • • • • •	45
第Ⅱ音	部 量子力学の展開				
1 化	学結合の理論			藤永 茂	
§ 1. 1	化学と量子力学・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
§ 1. 2	最初の10年・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
§ 1. 3	G. N. Lewis の二つの論文 · · · · · · · · · · · · · · · · · · ·				
§ 1. 4	有機化学では ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
§ 1. 5	ab initio 計算は役に立つか ·····		• • • • •		76
2 生	命現象への量子力学の適用			5門佐重雄	
§ 2. 1	量子生物物理学の形成とその発展 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
§ 2. 2	光合成における励起移動と電子移動 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
§ 2. 3	生体分子の chirality と光学活性 · · · · · · · · · · · · · · · · · · ·	•••••	• • • • •		91

§ 2. 4	水の効果と非線形性、対称性の破れ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100
3 分	子科学の目指すもの	長倉三郎
§ 3. 1	はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	109
§ 3. 2	分子の中の原子のとらえ方の変遷と量子力学	110
§ 3. 3	分子内の電子と量子力学 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113
§ 3. 4	分子の壁を越える・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	117
§ 3. 5	励起分子を捉える・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	119
§ 3. 6	化学反応の電子理論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	121
4 固化	本の諸様相	金森順次郎
§ 4. 1	固体の研究と量子力学 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	127
§ 4. 2	Bloch 波と局在状態 · · · · · · · · · · · · · · · · · · ·	131
§ 4. 3	バンド理論の発展・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	134
§ 4. 4	擬ポテンシャルと virtual な束縛状態(1電子近似のモデル化	;) · · · · · · · 139
§ 4. 5	固体の提起する問題の例――不完全な結晶 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • • • • • • • • • • • • • • • • • •
§ 4. 6	結 び	143
5 磁化	生研究の進展	芳田 奎
§ 5. 1	イオン結晶の磁性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	147
§ 5. 2	金属磁性の研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	152
§ 5. 3	希薄合金の磁性研究 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	156
§ 5. 4	近藤効果 · · · · · · · · · · · · · · · · · · ·	161
§ 5. 5	おわりに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	166
6 量	子流体	碓井恒丸
§ 6. 1	量子液体と量子固体 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	169
§ 6. 2	2 流体論	170
§ 6. 3	素励起 · · · · · · · · · · · · · · · · · · ·	171
§ 6. 4	Bose 凝縮体······	172
§ 6. 5	量子統計的凝縮と有効波動関数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	173
§ 6. 6	超流動	175
§ 6. 7	超流体密度 $ ho_{ m s}$ · · · · · · · · · · · · · · · · · · ·	177
§ 6. 8	荷電超流体 · · · · · · · · · · · · · · · · · · ·	178
§ 6. 9	非等方超流体 · · · · · · · · · · · · · · · · · · ·	180
§ 6. 10	⁴ He- ³ He 混合体·····	181

	F	1	次	xi
§ 6. 11	低次元·····			181
§ 6. 12	固体の超流動?・・・・・・・・・			182
7 統	十力学のあゆみ アルファイ			久保亮五
§ 7. 1	Ludwig Boltzmann—統計	力学の始め	か	185
§ 7. 2	マクロな世界の量子法則 ・・・			190
§ 7. 3	統計熱力学 · · · · · · · · · · · · · · · · · · ·			194
§ 7. 4	非平衡系の統計力学 ・・・・・・			202
§ 7. 5	基本的な難問題			206
8 量-	子光学		高辻正	基,江沢 洋
§ 8. 1	歴史的なこと ・・・・・・・・・・・・・			
§ 8. 2	コヒーレント表示 ・・・・・・・・・			
§ 8. 3	レーザー理論 · · · · · · · · · · · · · · · · · · ·			
§ 8. 4	コヒーレントな放射現象 ・・・			
§ 8. 5	熱浴も含めた量子力学的あつ			
§ 8. 6	Χ線 νーザーへの期待 ・・・・・	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	234
9 核物	物質の諸様相			玉垣良三
§ 9. 1	まえがき ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
§ 9. 2	核力の特性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			242
§ 9. 3	標準密度の核物質での核力と			
§ 9. 4	高密度の核物質――中性子星			
§ 9. 5	まとめに代えて	• • • • • • • • • • • • • • • • • • • •	,	259
10 原	「子核の理論			高木修二
§ 10. 1	殻模型をめぐって・・・・・・・			
§ 10. 2	集団運動をめぐって・・・・・・			
§ 10. 3	核反応機構をめぐって・・・・	• • • • • • • • •		281
11 無	限大の困難をめぐって			朝永振一郎
§ 11. 1	まえがき・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
§ 11. 2	無限大の困難・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
§ 11. 3	電子の見かけ上の質量・・・・・			
§ 11. 4	電子の自己場と自己エネル:			
§ 11. 5	真空偏極および荷電体の見れ			
§ 11. 6	散乱問題における無限大・・・			296

§ 11. 7	われわれの理論は全然無価値であろうか・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	298
§ 11. 8	困難はどういうふうにおこっているか・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	299
§ 11. 9	困難はどこからおこっているか・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	301
§ 11. 10	無限大をにげる第1の方法――・最初の近似で計算を止ぬ	うよ'・・・・・302
§ 11. 11	第2の方法――減衰理論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	303
§ 11. 12	減衰理論に対する批判 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
§ 11. 13	第3の方法――切断理論と素粒子の大きさ ・・・・・・・・・	309
§ 11. 14	準位のずれの実験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	311
§ 11. 15	散乱問題の無限大と、自己エネルギーおよび真空偏極の	
	無限大とは無関係であるか ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
§ 11. 16	第4の方法――くりこみ理論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
§ 11. 17	第5の方法——C-中間子理論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	315
§ 11. 18	結び	317
12 量	子電磁力学の現状	木下東一郎
§ 12. 1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	319
§ 12. 2	最近の理論と実験の成果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	322
§ 12. 3	種々のテストの比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	331
§ 12. 4	将来の方向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	333
13 n	ドロンの力学	河原林 研
§ 13. 1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
§ 13. 2	ハドロンの性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	341
§ 13. 3	ハドロンの模型・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	349
§ 13. 4	ハドロン力学 I —— S 行列的アプローチ \cdots	356
§ 13. 5	ハドロン力学 Π ——非 Abel ゲージ場の理論 · · · · · · · · ·	360
§ 13. 6		
	エピローグ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	365
14 電	ェピローグ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
【4 電 §14.1		藤川和男
	磁相互作用と弱い相互作用の統一理論の試み	藤川和男 ·····369
§ 14. 1	磁相互作用と弱い相互作用の統一理論の試み はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	藤川和男 369 369
§ 14. 1 § 14. 2	磁相互作用と弱い相互作用の統一理論の試み はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	藤川和男 369 369 372
\$ 14. 1 \$ 14. 2 \$ 14. 3	磁相互作用と弱い相互作用の統一理論の試み はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	藤川和男 ·····369 ····369 ····372 ····374
\$ 14. 1 \$ 14. 2 \$ 14. 3 \$ 14. 4	磁相互作用と弱い相互作用の統一理論の試み はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	藤川和男 369 372 374

§ 14. 8	おわりに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • • • •	• • • • •	387
15 星	の進化と元素の起源			杉本大一郎
§ 15. 1	星の重力収縮・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			389
§ 15. 2	近代的な星の進化論の始まり・・・・・・			390
§ 15. 3	星の進化と元素の起源・・・・・・・・・			
§ 15. 4	物質の状態と量子力学・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
§ 15. 5	相互作用の効果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
§ 15. 6	ミクロの物理とマクロの物理・・・・・			
§ 15. 7	星の内部構造と進化の理論・・・・・・			
§ 15. 8	中性子星形成の困難・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
§ 15. 9	結論			
16 原	子分子過程			高柳和夫
§ 16. 1	原子・分子と量子力学・・・・・・・・・・・・			
§ 16. 1	天体スペクトルの解読・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
§ 16. 2	光の吸収・放出過程・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
§ 16. 3 § 16. 4	電子衝突・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
§ 16. 4	あとがき・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
8 10. 5	めこがさ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			424
	下巻	内容	\$	
第Ⅲ部	部 量子力学の方法			
17 ±	量子力学と対称性(大貫義郎)	§ 1	18. 5	準粒子
§ 17		_		おわりに
§ 17		10	名休	系における長距離秩序と
§ 17	7.3 射線表現とベクトル表現			の破れ(恒藤敏彦)
§ 17	7.4 対称性の二つのタイプ		19. 1	
§ 17	7.5 場の量子論と対称性	•	19. 2	超流動・超伝導の秩序
18 §	多体問題の理論形式	§ :	19. 3	秩序パラメタ
	(阿部龍蔵)	§ :	19. 4	秩序パラメタの空間変化と
§ 18	3.1 はじめに			りらぎ
§ 18		-		安定な構造
•	3.3 変分法の応用	§ :	19. 6	いくつかの注意
§ 18	8.4 個別励起と集団励起			

目 次

xiii