PART ONE

THE BASIC IDEAS AND THE STANDARD PURELY PROBABILISTIC INTERPRETATION OF WAVE MECHANICS

CHAPTER I. THE BASIC IDEAS OF WAVE MECHANICS	
1. Point of departure2. First developments in Wave Mechanics	3 7
CHAPTER II. THE HAMILTONIAN APPROACH TO WAVE MECHANICS (THE ANALOGY BETWEEN ANALYTICAL MECHANICS AND GEOMETRICAL OPTICS)	
 Classical mechanics of the point mass. Jacobi's theorem Propagation of waves in an isotropic medium. The approximation of Geometrical Ontics 	10 14
3. The transition from Classical to Wave Mechanics	17
4. General equations for the Wave Mechanics of a particle	20
 5. An automatic process for arriving at the wave-equation 6. Theorem concerning group-velocity. Its reconciliation with Classical Machanica 	21 99
7. The relativistic equation of propagation in Wave Mechanics applied to a	44
Ψ wave	25
Chapter III. First Principles Relative to the Probabilistic Interpretation of Ψ Waves	
1. The central problem in the interpretation of Wave Mechanics	29
2. The principle of localization or principle of interference	30
3. Precise statement of the principle of interference. The probability-current 4. The Heisenberg uncertainty relations	32
5. The principle of spectral decomposition (Born)	35
6. Comments on the foregoing conclusions	36
7. The theory of probability-current in relativistic terms	38
Chapter IV. The Wave Mechanics of Systems of Particles	
1. The Classical Dynamics of point-mass systems	40
2. The Wave Mechanics of systems of particles	42
particles	44
4. Systems of particles having the same physical nature	46
5. Remarks on the Wave Mechanics of systems of particles	48
Chapter V. A General View of the Probabilistic Interpretation of Wave Mechanics	
1. General considerations	49
2. An analysis of the role of operations of measurement in Quantum Physics	51
3. The general formalism of the probabilistic interpretation	52

Chapter VI. Various Aspects of the Probabilistic Interpretation of Wave Mechanics	
 The notion of superposition	56 57 60 62 63 64 68
Chapter VII. Objections to the Purely Probabilistic Interpretation of Wave Mechanics	
1. Consequences of the disappearance of the trajectory concept 2. Einstein's objection at the 1927 Solvay Congress	72 74 76 79 83 85
PART TWO	
THE THEORY OF THE DOUBLE SOLUTION	
CHAPTER VIII. INTRODUCTION AND PROGRAM	
 History of the theory of the Double Solution	89 93
CHAPTER IX. PRINCIPLES OF THE THEORY OF THE DOUBLE SOLUTION	
 General ideas	98 99 100 102 103 105 108 111
9. A study of the general case of non-static fields	112
 CHAPTER X. THE DYNAMICS OF THE PARTICLE IN THE CAUSAL THEORY 1. The Lagrange and the Hamilton equations	116 118 120
CHAPTER XI A FEW CONSEQUENCES OF THE GUIDANCE FORMULA	
1. The stationary states of the hydrogen atom	124 128 136
CHAPTER XII. THE TRANSITION FROM SINGLE-PARTICLE WAVE MECHANICS TO THE WAVE MECHANICS OF PARTICLE SYSTEMS	
1. The nature of the problems in the causal theory. . . 2. The arguments of my 1927 paper. . . 3. Another approach to the question. . .	140 142 148

IX

representation of that system's motion in configuration space	152
5. The case of particles of the same nature	160
hapter XIII. The Probabilistic Significance of $ \Psi ^2$ and its Justification	
1. A reconsideration of the 1927 arguments	164
2. A comparison with Liouville's theorem and the ergodic theory	166
3. A brief summary of Bohm's paper of January 1953	170
4 Supplementary observations	172
	1.2
hapter XIV. Pauli's Objections to the Theory of the Pilot-wave	
1. The discussion of the pilot-wave theory at the Solvay Congress of October	:
1927	174
2. The collision of a particle and a plane rotator according to Fermi	175
3. Pauli's objection to the guidance formula	180
4. The abandonment of attempts at a causal interpretation of Wave Mechanics	
after 1927	183
HAPTER XV. BOHM'S THEORY OF MEASUREMENT AND THE STATISTICAL SCHEMA	
OF THE CAUSAL THEORY	
1. Bohm's papers of January 1952	186
2. The theory of measurement according to Bohm	187
3. The statistical schema of the causal theory	194
 Takabayasi's observation about the moments of the probability distributions Examination of an observation by Bohr concerning the collision of a particle 	195
with an atom	197
HADTER XVI THE EXTENSION OF THE INFAC OF THE DOUBLE SOLUTION TO	
DIRAC'S THEORY OF THE IDEAS OF THE DOUBLE SOLUTION TO	
DIRACS THEORY OF THE ELECTRON	
1. Introduction	200
	- 900
2. A summary of Dirac's theory of the electron	200
2. A summary of Dirac's theory of the electron	200 204
 A summary of Dirac's theory of the electron	200 204 209
 A summary of Dirac's theory of the electron	200 204 209 212
 A summary of Dirac's theory of the electron	200 204 209 212
2. A summary of Dirac's theory of the electron	200 204 209 212
 A summary of Dirac's theory of the electron	200 204 209 212
 A summary of Dirac's theory of the electron	200 204 209 212 216
 A summary of Dirac's theory of the electron	200 204 209 212 212 216 219
 A summary of Dirac's theory of the electron	200 204 209 212 212 216 219 220
 A summary of Dirac's theory of the electron	200 204 209 212 212 216 219 220
 A summary of Dirac's theory of the electron	200 204 209 212 216 219 220 224
 A summary of Dirac's theory of the electron	200 204 209 212 216 219 220 224
 A summary of Dirac's theory of the electron	2004 2009 212 216 216 219 220 224 227
 A summary of Dirac's theory of the electron	2004 2009 212 216 219 220 224 227 231
 A summary of Dirac's theory of the electron	2004 2009 212 216 219 220 224 227 231 236
 A summary of Dirac's theory of the electron	2004 2009 212 216 219 220 224 227 231 236 240
 A summary of Dirac's theory of the electron	2004 2009 212 216 219 220 224 227 231 236 240 240

х

Cf	AAPTER XVIII. WAVE-TRAINS AND THE REDUCTION OF THE PROBABILITY PACKET	
	1. A difficulty arising from the spontaneous spreading of wave-trains 2. The non-linearity of the wave equation might permit a conception of wave-	244
	groups without spreading.	247
	3. A weakening of the bond, thus far assumed, between the u and Ψ waves	253
	4. The representation of emission from a point-source by a divergent wave	254
	5. The division of a wave-group by a semi-transparent mirror	258
	6. The same problem considered in the theory of the Double Solution	260
	7. Reconsideration of the relationship between the u and Ψ waves	265
	8. The extension of the foregoing ideas to collision problems	267
	9. Summary	269
Cı	HAPTER XIX. STATIONARY STATES, QUANTUM TRANSITIONS AND THE CON- SERVATION OF ENERGY	
	1. Stationary states	270
	2. The conservation of energy during a collision of a particle with an atom	272
	3. The double-solution point of view	273
	4. Another instructive example of a collision between an atom and a particle	275
	5. The energy-momentum tensor in the pilot-wave theory	276
	6. A reconsideration of measuring processes	279
	7. Reconsideration of the question of stationary states and quantum transitions	281
Cı	hapter XX. Summary and Conclusion	
	1. An overall view of the results obtained	286
	2. The similarity between the conceptions of the Double Solution and much	
	older ideas	287
	3. Possibilities of experimental verification	289
	4. The agreement of the theory of the Double Solution with General Relativity	291
	APPENDIX	
A	n Alternative Demonstration of the Guidance Formula	295

An Alternative Demonstration of the Guidance Formula295Bibliography.299Author Index301Subject Index303

		xı	