Contents

§ 1. Introduction	1
1.1. A Survey of the Present State of Field Theory	1
1.2. Plan of Presentation	7
1.3. Some Notation \ldots \ldots \ldots \ldots \ldots \ldots \ldots	8
CHAPTER I Classical Theory of Free Fields	
\S 2. Lagrangian Formalism and Field Invariants	10
2.1. Fields and Particles	10
2.2. Hamiltonian and Lagrangian Formalisms	11
2.3. The Lagrangian Function and the Principle of Sta-	
tionary Action	12
2.4. Transformation Properties of the Field Functions.	15
Tensors and Spinors	$\frac{15}{19}$
2.5. Noether's Theorem	$\frac{19}{23}$
2.0. The Angular Momentum Tensor and the Spin Tensor	23 24
2.8. The Charge and the Current Vector	$\frac{24}{26}$
-	
§ 3. The Scalar Field	$\frac{28}{28}$
3.1. Lagrangian Formalism for a Real Scalar Field 3.2. Momentum Representation and Positive- and Nega-	48
tive-Frequency Components	30
3.3. The Discrete Momentum Representation	34^{-30}
3.4. The Complex Scalar Field	35
§ 4. The Vector Field	38
4.1. Lagrangian, Subsidiary Condition, and Invariants	38
4.2. Transition to the Momentum Representation	$\frac{30}{43}$
4.3. Spin of the Vector Field	46
4.4. Klein-Gordon Equations Written in the Form of a	~~
System of First-Order Equations.	47
§ 5. The Electromagnetic Field	49
5.1. Potential of the Electromagnetic Field	49
5.2. Gauge Transformation of the Second Kind and the	10
Lorentz Condition	51
5.3. Lagrangian Formalism	53
5.4. Transverse, Longitudinal, and Time Components .	55
5.5. Spin	57
§ 6. The Spinor Field. Dirac Matrices and Transformation Laws of	
Spinor Functions.	58
ix	
17	

 6.1. Linearization of the Klein-Gordon Operator 6.2. Dirac Matrices 6.3. The Dirac Equation 6.4. Transformation Properties of the Spinor Field 	$58 \\ 60 \\ 64 \\ 66$
§ 7. The Spinor Field. Properties of the Solutions and Dynamic	
Variables	72
7.1. Momentum Representation and Matrix Structure .	72
7.2. Decomposition into Spin States and Normalization	
and Orthogonality Relations	76
7.3. Lagrangian Formalism and Invariants	79
§ 8. Lagrangian of a System of Fields	83
System of Fields	84
8.2. Invariants under Gauge Transformations	85
-	

CHAPTER II Quantum Theory of Free Fields

§ 9.	General Principles of Quantization of Wave Fields 9.1. Operator Nature of the Field Functions and the Trans-	90
	formation Law of the State Amplitude	90
	9.2. Quantization Postulate for Wave Fields	92
	9.3. The Physical Meaning of the Positive- and Negative-	
	Frequency Components and of Adjoint Functions.	96
	9.4. The Vacuum State and the Amplitude of the State	
	with a Given Number of Particles	98
§ 10.	Setting Up the Commutation Relations	101
	10.1. Types of Commutation Relations	101
	10.2. Normal Product of Operators and the Form of Dynam-	
	ic Variables	103
	10.3. Requirement that Energy Should Be Positive	105
	10.4. Fermi-Dirac and Bose-Einstein Commutation Rela-	100
	tions	107
	10.5. Commutation Relations and the Discrete Momentum Representation	109
§ 11.	Scalar and Vector Fields	112
	11.1. The Real Scalar Field	112
	11.2. The Complex Scalar Field.	115
	11.3. The Complex Vector Field	116
§ 12.	The Spinor Field	120
	12.1. Fermi-Dirac Quantization and Commutation Func-	100
	tions	120
	12.2. Dynamic Variables	$\frac{122}{124}$
8 13	12.3. Charge Conjugation	$124 \\ 128$
y 10.	13.1. Singularities of the Electromagnetic Field and the	148
	Quantization Procedure	128
	13.2. Indefinite Metric	130
	13.3. The Form of the Basic Quantities	136
	\sim	

ş	14.	Green's Functions	136
			136
		14.2. "Retarded" and "Advanced" Green's Functions for a	
			138
			141
			143
		14.5. Relation to the Notations of Stueckelberg and of	1 70
			46
8	15.		.47
5			47
		15.2. Explicit Form and Singularities of the Functions $D(x)$. 41
			21
			51
		15.3. Regularization of Singular Functions by the Method	~0
			53
§	16.		57
		16.1. The Coefficient Functions of Operator Expressions 1	57
			59
		16.3. Improper Nature of Singular Functions 1	68
			75
			77
			84
			85
			90
			00

CHAPTER III The Scattering Matrix	
\S 17. Fundamental Ideas of the Theory of Interacting Fields	192
17.1. Representations of the Schrödinger Equation	192
17.2. The Interaction Representation	194
17.3. The Scattering Matrix	197
17.4. Relativistic Covariance and Unitary Nature of the	
S-Matrix	199
17.5. The Condition of Causality	200
17.6. "Classical Fields" as Arguments of Functionals	204
\S 18. The Interaction Lagrangian and the S-Matrix	206
18.1. Expansion of the S-Matrix into a Power Series in	-00
Powers of the Interaction	206
18.2. Conditions of Covariance, Unitarity, and Causality	
for S_n	208
18.3. Determination of the Explicit Form of $S_1(x)$ and	
$S_2(x, y)$	211
18.4. Chronological Product of Local Operators	215
18.5. Determination of the Functions S_n for Arbitrary n	217
18.6. Analysis of the Arbitrariness of the Functions S_n and	
the Most General Form of $S(g)$	220
§ 19. Evaluation of Chronological Products	227
19.1. Chronological Pairing	$\frac{241}{227}$
19.2. Wick's Theorem for Chronological Products.	$\frac{227}{233}$
10.2. Works Theorem for Chronological Flouliets	400

-	 Reduction of the S-Matrix to the Normal Form 20.1. Structure of the Coefficients of the Scattering Matrix 20.2. Feynman Diagrams and the Rules of Correspondence 20.3. Examples	$235 \\ 235 \\ 239 \\ 245 \\ 247$
	 Feynman's Rules for the Evaluation of Matrix Elements of the Scattering Matrix. 21.1. Transition to the Momentum Representation 21.2. Evaluation of the Matrix Elements 21.3. Taking Account of Symmetry Properties 21.4. Scattering by External Fields 21.5. General Structure of the Matrix Elements 	249 249 252 257 260 263
	 Probabilities of Scattering Processes and Effective Cross Sections 22.1. Normalization of the State Amplitude 22.2. Calculation of Transition Probabilities 22.3. Differential and Total Effective Cross Sections 	$267 \\ 267 \\ 270 \\ 273$
§ 23.	 Examples of Calculation of Second-Order Processes 23.1. Compton Scattering	$275 \\ 275 \\ 279 \\ 282$
	PTER IV Removal of Divergences from the S-Matrix	
§ 24.	On the Divergences of the S-Matrix in Electrodynamics (Second	
	Order)	285 286
	 Order). 24.1. Divergent Diagram with Two External Electron Lines Σ. 24.2. Segregation of the Divergent Part of Σ. 24.3. Divergent Diagram with Two External Photon Lines 	286 291
	 Order). 24.1. Divergent Diagram with Two External Electron Lines Σ. 24.2. Segregation of the Divergent Part of Σ. 24.3. Divergent Diagram with Two External Photon Lines Π. 24.4. Segregation of the Divergences from Π and Gauge Invariance. 	286
с о <i>г</i>	 Order). 24.1. Divergent Diagram with Two External Electron Lines Σ 24.2. Segregation of the Divergent Part of Σ 24.3. Divergent Diagram with Two External Photon Lines Π 24.4. Segregation of the Divergences from Π and Gauge Invariance 24.5. Construction of an Integrable S₂. 	286 291 293
§ 25.	 Order). 24.1. Divergent Diagram with Two External Electron Lines Σ 24.2. Segregation of the Divergent Part of Σ 24.3. Divergent Diagram with Two External Photon Lines Π 24.4. Segregation of the Divergences from Π and Gauge Invariance 24.5. Construction of an Integrable S₂. On the Divergences of the S-Matrix in Electrodynamics (Third Order). 25.1. Vertex Diagram of the Third Order 	286 291 293 296
§ 25.	 Order). 24.1. Divergent Diagram with Two External Electron Lines Σ 24.2. Segregation of the Divergent Part of Σ 24.3. Divergent Diagram with Two External Photon Lines Π 24.4. Segregation of the Divergences from Π and Gauge Invariance 24.5. Construction of an Integrable S₂. On the Divergences of the S-Matrix in Electrodynamics (Third Order). 25.1. Vertex Diagram of the Third Order 25.2. Segregation of the Divergence from Γ and Gauge Invariance 25.3. Ward's Identity 	286 291 293 296 298 301 302 304 309
	 Order). 24.1. Divergent Diagram with Two External Electron Lines Σ 24.2. Segregation of the Divergent Part of Σ 24.3. Divergent Diagram with Two External Photon Lines Π 24.4. Segregation of the Divergences from Π and Gauge Invariance 24.5. Construction of an Integrable S₂. On the Divergences of the S-Matrix in Electrodynamics (Third Order). 25.1. Vertex Diagram of the Third Order 25.2. Segregation of the Divergence from Γ and Gauge Invariance 25.3. Ward's Identity 25.4. Construction of an Integrable Function S₃ 	286 291 293 296 298 301 302 304
	 Order). 24.1. Divergent Diagram with Two External Electron Lines Σ 24.2. Segregation of the Divergent Part of Σ 24.3. Divergent Diagram with Two External Photon Lines Π. 24.4. Segregation of the Divergences from Π and Gauge Invariance 24.5. Construction of an Integrable S₂. On the Divergences of the S-Matrix in Electrodynamics (Third Order). 25.1. Vertex Diagram of the Third Order 25.2. Segregation of the Divergence from Γ and Gauge Invariance 25.3. Ward's Identity 25.4. Construction of an Integrable Function S₃ General Rules for the Removal of Divergences from the S- Matrix 26.1. Formulation of the Problem. 	286 291 293 296 298 301 302 304 309
	 Order). 24.1. Divergent Diagram with Two External Electron Lines Σ 24.2. Segregation of the Divergent Part of Σ 24.3. Divergent Diagram with Two External Photon Lines Π 24.3. Divergent Diagram with Two External Photon Lines Π 24.4. Segregation of the Divergences from Π and Gauge Invariance. 24.5. Construction of an Integrable S₂. On the Divergences of the S-Matrix in Electrodynamics (Third Order). 25.1. Vertex Diagram of the Third Order 25.2. Segregation of the Divergence from Γ and Gauge Invariance. 25.3. Ward's Identity 25.4. Construction of an Integrable Function S₃ General Rules for the Removal of Divergences from the S-Matrix 	286 291 293 296 298 301 302 304 309 311 314

xii

	26.5. Choice of th 26.6. Transition to 26.7. Generalizatio	The Operation $\Delta(G)$	323 328 331 334
ş :	tum Representation. 27.1. Analytic Pro 27.2. Structure of	operties of S_n	336 336 337 338
§ :	28.1. Interactions 28.2. List of Inter 28.3. Nonlocal Nat 28.4. Specification	of the First and Second Kinds 3 ractions of the First Kind 3 ture of Interactions of the Second Kind 3 of a Theory of the First Kind by a Finite	340 340 344 347 349

CHAPTER V Application of the General Theory of the Removal of Divergences to Special Cases

29.1.	Field with Nonlinear Interaction	$352 \\ 352 \\ 353$
30.1. 30.2.	Electrodynamics. I. General Form of Counter Terms Types of Divergent Diagrams and Furry's Theorem Gauge Invariance of the Scattering Matrix Counter Terms	$355 \\ 355 \\ 361 \\ 376$
31.1. 31.2.	Clectrodynamics. II. Mass and Charge Renormalization Gauge Transformation of the Pairing \overline{AA} Nonuniqueness of the Process of Removal of Infinities The Complete Green's Functions G, D, and the Vertex Part Γ	378 378 380 386
	The Formal Nature of Infinite Renormalizations . Radiation Corrections to External Lines and the Choice of Finite Constants	392 395
32.1. 32.2. 32.3.	ectrodynamics. III. Radiation Corrections of the Second Order	399 399 402 405 406
$33.1. \\ 33.2.$	calar Meson Theory	409 409 411 413

§ 34. Schwinger's Equations for Green's Functions	416
34.1. Relation of the Complete Green's Functions to the	;
Vacuum Expectation Values of T-Products	
34.2. Generalized Wick's Theorem	421
34.3. Schwinger's Equations	424
34.4. Taking Counter Terms into Account	431
-	

CHAPTER VI Schrödinger Equation and Dynamic Variables

§	35.	Schrödinger Equation for the State Amplitude	433
·		35.1. Equation for $\Phi(g)$ in Terms of Variational Derivatives	433
		35.2. Schrödinger Equation in the Interaction Representa-	
		tion and the Tomonaga-Schwinger Equation	435
		35.3. Singularities of the Generalized Hamiltonian	4 40
		35.4. Fundamental Properties of the Generalized Hamil-	
		tonian	444
ş	36.	Dynamic Variables of a System of Interacting Fields	445
Ŭ		36.1. Energy, Momentum, and the Angular-Momentum	
		Tensor	446
		36.2. Local Dynamic Quantities.	450
		36.3. The Current Vector	454
		36.4. The Lorentz Condition	457
		36.5. Wave Field Operators.	458
ş	37.	Vacuum Polarization and the Anomalous Magnetic Moment of	
v		the Electron	459
		37.1. Vacuum Polarization	459
		37.2. Anomalous Magnetic Moment of the Electron	465
ş	38.	Dirac Equation with Radiation Corrections	471
		38.1. Generalization of the Electron Wave Function	471
		38.2. Generalization of the Dirac Equation.	475
		38.3. Lamb Shift	479
		38.4. Concluding Remarks	482
		*	

CHAPTER VII The Method of Functional Averaging

§	39.	Representation of Green's Functions in Terms of Continuous	
			484
		39.1. Introduction	484
		39.2. Evaluation of $\langle T \exp i \int v \varphi dp \rangle_0$	4 86
		39.3. Continuous Integrals	
		39.4. Closed Expressions for Green's Functions	
ş	4 0.	Gauge Transformations of the Electron Green's Function in	
-		Spinor Electrodynamics	496
		40.1. Transition to the Transverse Gauge and Transforma-	
		tion of the Function $G(x, y A)$	496
		40.2. The Functional Integral for $G(x, y)$ in the Case of	
		Transverse Gauge	499
		40.3. Gauge Transformation of the Function $G(x, y)$	501

xiv

§ 41. Investigation of the Bloch-Nordsieck Model	503
41.1. The Bloch-Nordsieck Model and the Determination of	
G(x, y A)	503
41.2. Evaluation of $G(x, y)$	507
CHAPTER VIII The Renormalization Group	
§ 42. The Group of Multiplicative Renormalizations in Spinor	
Electrodynamics	511
$42.1. Introduction \dots \dots$	511
42.2. The Group Property of Multiplicative Renormaliza-	0
tions	512
42.3. Functional Equations of the Group	514
42.4. The Lie Differential Equations.	518
42.5. The Vertex Part	520
§ 43. Asymptotic Properties of the Electrodynamic Green's Func-	-
	522
tions	$522 \\ 522$
43.2. Asymptotic Behavior in the Ultraviolet	$524 \\ 524$
43.3. Asymptotic Behavior in the Infrared.	529
§ 44. The Renormalization Group in Electrodynamics for $d_i \neq 0$. 44.1. Generalization of the Group Equations	$\begin{array}{c} 531 \\ 531 \end{array}$
44.1. Generalization of the Group Equations	991
Ultraviolet and in the Infrared	534
44.3. Asymptotic Behavior of the Vertex Part.	536
44.4. Various Possibilities	544
	011
§ 45. The Renormalization Group in the Two-Charge Pseudoscalar	= 1 =
Meson Theory	$\begin{array}{c} 545 \\ 545 \end{array}$
45.2. Transition to Functional Equations of the Group.	$545 \\ 546$
45.3. Asymptotic Behavior in the Ultraviolet.	550
49.5. Asymptotic Denavior in the Ortraviolet	550
CHAPTER IX Dispersion Relations	
§ 46. General Remarks on the Method	553
46.1. Introduction	553
46.2. The Mathematical and Physical Bases for the Dis-	
persion Relations	554
46.3. A Review of the Work on the Dispersion Relations	558
46.4. The Problem of the Foundations of the Dispersion	
Relations	563
§ 47. Fundamental Properties of the S-Matrix in Local Field Theory	565
47.1. Introductory Remarks	565
47.2. General Properties	569
47.3. Local Properties	571
§ 48. Spectral Representation of the Pion Green's Function	575
48.1. Radiation Operators of the First and Second Order and	
Their Vacuum Expectation Values	576
48.2. Vacuum Expectation Value of $\delta^2 S / \delta \varphi_{\sigma}(x) \delta \varphi_{\rho}(y)$.	578

		48.3.	Vacuum Expectation Value of the Product of Two Currents	579
		48.4.	Analytic Properties of Q^r and Q^a	582
		48.5.	Spectral Representation for q^r , q^a , and q^c	586
§	49.	Spectral 49.1.	Representation of the Fermion Green's Function . Spectral Representation of the Vacuum Expectation	590
		49.2	Value of $\delta^2 S / \delta \psi \delta \overline{\psi}$	$\begin{array}{c} 590 \\ 596 \end{array}$
2	50		5	597
8	50.		de for Meson-Nucleon Scattering	597 597
		50.2.	Transition to a Fixed Frame of Reference. The Diffi-	
		50.3.	culties of Analytic Continuation	602
			tions for Forward Scattering	604
§	51.		s of Analytic Continuation of the Scattering Amplitude	
		for $\mathbf{p} \neq$	0	610
		51.5.	Analytic Properties in the Fictitious Region $\tau \langle -\mathbf{p}^2 \rangle$	610
			Structure of the Single Nucleon Term	614
		51.5. 51.4	An Auxiliary Theorem	617
			Analytic Continuation Towards $\tau = \mu^2$	$\begin{array}{c} 625 \\ 627 \end{array}$
8	52.		on Relations for the Scattering of Pions by Nucleons	633
3		52.1.	Transition to Real Quantities	633
		52.2.	Taking into Account the Symmetry Properties with	
			Respect to E	636
			Isotopic Spin and Spin Structure	638
			Case of Forward Scattering	642
§	53.	Conclusio	on	643
A	Appendix I. A List of Singular Functions			
Appendix II. Mathematical Appendix				654
References				710
A	Author Index			
Sı	Subject Index			

xvi