Contents

CHAPTER	I INTRODUCTORY KINETIC THEORY				
1 2	Introduction, 1 Molecular Model, 2				
3	Pressure, Temperature, and Internal Energy, 4				
4	Mean Free Path, 12				
	Transport Phenomena, 15				
6	Molecular Magnitudes, 23				
_	,				
CHAPTER	II EQUILIBRIUM KINETIC THEORY 27				
1	Introduction, 27				
2	Velocity Distribution Function, 27				
3	Equation of State for a Perfect Gas, 31				
4	Maxwellian Distribution—Condition for Equilibrium, 35				
5	Maxwellian Distribution—Final Results, 42				
	Collision Rate and Mean Free Path, 48				
7	Chemical Equilibrium and the Law of Mass Action, 55				
CHAPTER	III CHEMICAL THERMODYNAMICS 59				
1	Introduction, 59				
2	Thermodynamic Systems and Kinds of Equilibrium, 60				
3	Conservation of Mass, 63				
4	Conservation of Energy; First Law, 65				
5	The Second Law, 66				
6	The Gibbs Equation for a Chemically Reacting System, 70				
7	Entropy Production in Chemical Nonequilibrium; Con				
0	dition for Reaction Equilibrium, 75				
8 9	Mixtures of Perfect Gases, 77 Law of Mass Action, 82				
10	Heat of Reaction; van't Hoff's Equation, 83				
10	•				
xiii					

СНАРТЕР	R IV STATISTICAL MECHANICS	86
1	Introduction, 86	
2	Macroscopic and Microscopic Descriptions, 88	
3	Quantum Energy States, 89	
4	Enumeration of Microstates, 93	
5	Distribution over Energy States—General Case, 101	
6	Distribution over Energy States—Limiting Case, 104	
7	Relation to Thermodynamics; Boltzmann's Relation,	112
8	Thermodynamic Properties, 117	
9 10	Properties Associated with Translational Energy, 120	
11	Contribution of Internal Structure, 126 Monatomic Gases, 129	
12	Diatomic Gases, 129	
13	Chemically Reacting Systems and Law of Mass Action,	139
14	Dissociation-Recombination of Symmetrical	
	Diatomic Gas, 148	
СНАРТЕ	R V EQUILIBRIUM GAS PROPERTIES	152
1	Introduction, 152	
2	Symmetrical Diatomic Gas, 152	
3	Ideal Dissociating Gas, 157	
4	Ionization Equilibrium; The Saha Equation, 162	
5	Mixture of Gases, 165	
6	Properties of Equilibrium Air, 171	
CHAPTE	R VI EQUILIBRIUM FLOW	178
1	Introduction, 178	
2	Steady Shock Waves, 179	
3	Steady Nozzle Flow, 183	
4	Prandtl-Meyer Flow, 187	
5	Frozen Flow, 191	
СНАРТЕ	R VII VIBRATIONAL AND CHEMICAL RATE PROCESSES	197
1	Introduction, 197	
2	Vibrational Rate Equation, 198	
3	Entropy Production by Vibrational Nonequilibrium, 2	
4	Chemical Rate Equations—General Considerations, 2	
5	Energy Involved in Collisions, 216	

6	Rate Equation for Dissociation-Recombination Reactions, 222
7	Rate Equation for Complex Mixtures, 228
	High-Temperature Air, 229
	Symmetrical Diatomic Gas; Ideal Dissociating Gas, 232
10	Generalized Rate Equation, 234
11	Local Relaxation Time; Small Departures from Equilibrium, 236
CHAPTER	VIII FLOW WITH VIBRATIONAL OR CHEMICAL NONEQUILIBRIUM 245
1	Introduction, 245
2	Basic Nonlinear Equations, 246
3	Equilibrium and Frozen Flow, 251
4	Acoustic Equations, 254
5	Frozen and Equilibrium Speeds of Sound, 259
6	Propagation of Plane Acoustic Waves, 261
7	Equation for Small Departures from a Uniform Free Stream, 269
8	Flow over a Wavy Wall, 274
9	Linearized Flow behind a Normal Shock Wave, 281
10	Equations for Steady Quasi-One-Dimensional Flow, 286
11	Nonlinear Flow behind a Normal Shock Wave, 290
12	Fully Dispersed Shock Wave, 292
13	Nozzle Flow, 293
14	Method of Characteristics, 300
15	Supersonic Flow over a Concave Corner, 305
16	Supersonic Flow over a Convex Corner, 310
CHAPTER	IX NONEQUILIBRIUM KINETIC THEORY 316
1	Introduction, 316
2	The Conservation Equations of Gas Dynamics, 317
3	The Boltzmann Equation, 328
4	Equilibrium and Entropy, 334
5	The Equations of Equilibrium Flow, 344
6	Moments of the Boltzmann Equation, 346
7	Dynamics of a Binary Collision, 348
8	The Evaluation of Collision Cross-Sections, 356
9	The Evaluation of Collision Integrals, 361
10	Gas Mixtures, 368

CHAPTER	X FLOW WITH TRANSLATIONAL NONEQUILIBRIUM 375
1 2 3 4	Introduction, 375 The Bhatnagar-Gross-Krook Collision Model, 376 The Chapman-Enskog Solution of the Krook Equation, 379 The Chapman-Enskog Solution of the Boltzmann Equation, 385
6 7 8	The Navier-Stokes Equations, 390 Expansion in Sonine Polynomials, 394 Transport Properties, 403 Bulk Viscosity, 407 The Structure of Shock Waves, 412
	Linearized Couette Flow, 424
CHAPTER	XI RADIATIVE TRANSFER IN GASES 436
1 2 3 4 5 6 7 8	Introduction, 436 Energy Transfer by Radiation, 437 The Equation of Radiative Transfer, 443 Radiative Equilibrium, 446 The Interaction of Radiation with Solid Surfaces, 450 Emission and Absorption of Radiation, 452 Quasi-Equilibrium Hypothesis, 458 Formal Solution of the Equation of Radiative Transfer, 462 Simplifications and Approximations, 465
CHAPTER	XII FLOW WITH RADIATIVE NONEQUILIBRIUM 473
1 2 3 4 5 6 7 8	Introduction, 473 Basic Nonlinear Equations, 474 Asymptotic Situations; Grey-Gas Approximation, 476 One-Dimensional Equations, 479 Linearized One-Dimensional Equations, 485 Differential Approximation, 491 Acoustic Equation, 496 Propagation of Plane Acoustic Waves, 499
9 10 11	Equation for Small Departures from a Uniform Free Stream, 505 Linearized Flow through a Normal Shock Wave, 508 Nonlinear Flow through a Normal Shock Wave, 515

		Со	ntents	xvii
APPE	NDI	x		523
	1 2 3	Definite Integrals, 523 Fundamental Physical Constants, 524 Physical Constants for Constituents of Air, 52	4	
SUBJ	ECT	INDEX		525
SYME	BOL	INDEX		535