GNE V
ï
cv
1
1
3
4
6
6
9
1
4
4
4
5
6
7
9
1
1
2
3
4
5
6
Ť
8
9
9
0
2
3
-

PA	GE
25. The Conditions at the Transition between Laminar and Tur-	
$\mathbf{bulent} \ \mathbf{Flow}$	35
26. Intermittent Occurrence of Turbulence	36
27. Measurements of Pressure Drop at the Transition between	
Laminar and Turbulent Flow	38
28. Independence of the Critical Reynolds' Number of the Length	
of the Tube	38
	4 0
29. Historical Formulas for the Pressure Drop	40
	41
	43
	44
33. Measurement of the Mean Velocity of a Turbulent Flow by	
	46
	47
35. The Turbulent Velocity Distribution in the Region of Tran-	
	48
r o	51
37. Convergent and Divergent Flow.	52
CHAPTER IV	
BOUNDARY LAYERS.	58
38. The Region in Which Viscosity Is Effective for Large Reynolds'	
Numbers	58
39. The Order or Magnitude of the Various Terms in the Equation	

Numbers	98
39. The Order or Magnitude of the Various Terms in the Equation	
of Navier-Stokes for Large Reynolds' Numbers	59
40. The Differential Equation of the Boundary Layer	62
41. Definition of Thickness of the Boundary Layer.	64
42. Estimate of the Order of Magnitude of the Thickness of the	
Boundary Layer for the Flow along a Flat Plate	65
43. Skin Friction Due to a Laminar Boundary Layer.	67
44. Back Flow in the Boundary Layer as the Cause of Formation	
of Vortices	68
45. Turbulent Boundary Layers.	70
	70
47. Shear Stress at the Wall in the Case of a Turbulent Boundary	
Layer and the Thickness of This Layer	74
48. Friction Drag Due to a Turbulent Boundary Layer	76
	78
50. Means of Avoiding the Creation of Free Vortex Sheets and	
Their Consequences	80
51. Influencing the Flow by Sucking Away the Boundary Layer .	81
52. Rotating Cylinder and Magnus Effect	82
CHAPTER V	

DRAG OF BODIES MOVING THROUGH FLUIDS .						86
53. Fundamental Notions.						86
54. Newton's Resistance Law						86
55. Modern Ideas on the Nature of Drag.						87

x

xi

		PAGE
56.	The Deformation Resistance for Very Small Reynolds' Numbers	88
57.	The Influence of a Very Small Viscosity on the Drag	89
5 8.	The Relative Importance of Pressure Drag and Friction Drag	
	with Various Shapes of the Body.	90
59.	The Variation of the Drag with Reynolds' Number	91
60.	The Laws of Pressure Drag, Friction Drag, and Deformation	
	Drag	93
61.	General Remarks on the Experimental Results	95
	The Relation $c = f(R)$ for the Infinite Cylinder	96
63.	The Region above the Critical Reynolds' Number	98
64.	The Resistance Law for Finite Cylinders, Spheres, and Stream-	
	lined Bodies.	99
65.	Resistance in Fluids with Free Surfaces; Wave Resistance	101
66.	The General Resistance Law.	103
67.	Resistance to Potential Flow	104
	Drag of a Sphere Is Zero for Uniform Potential Flow	
69.	Resistance Due to Acceleration	107
~70.	Application of the Momentum Theorem	108
71.	Mutual Forces between Several Bodies Moving through a Fluid	109
72.	Resistance with Discontinuous Potential Flow	110
73.	Stokes's Law of Resistance	112
74.	Experimental Verification for Water; Influence of the Walls of	
		114
75.	Experimental Verification for Gases	116
	Correction of Stokes's Law by Oseen	
77.	The Resistance of Bodies in Fluids of Very Small Viscosity	118
78.	The Resistance of the Half Body	118
	Momentum of a Source	121
80.	The Resistance of a Body Calculated from Momentum Con-	
	siderations.	123
81.	Method of Betz for the Determination of the Drag from	
	Measurements in the Wake	
	The Kármán Trail	
	Application of the Momentum Theorem to the Kármán Trail .	
	Bodies of Small Resistance; Streamlining	136
85.	Comparison of the Calculated Pressure Distribution with the	
	Experimental One	
86.	Friction Drag of Flat Plates.	138

CHAPTER VI

Airfoil Theory	4
A. Experimental Results	4
87. Lift and Drag	4
88. The Ratio of Lift to Drag; Gliding Angle	4
89. The Lift and Drag Coefficients.	6
90. The Polar and Moment Diagrams of an Airfoil 14	7
91. Relation between the Flying Characteristics of Airfoils and	
Their Profiles	9
92. Properties of Slotted Wings	2

	AGE
93. The Principle of Operation of a Slotted Wing	
94. Pressure Distribution on Airfoils.	
B. The Airfoil of Infinite Length (Two-dimensional Airfoil Theory) .	
95. Relation between Lift and Circulation	
96. The Pressure Integral over the Airfoil Surface	160
97. Derivation of the Law of Kutta-Joukowsky by Means of the	
Flow through a Grid	161
98. Derivation of the Lift Formula of Kutta-Joukowsky on the	
Assumption of a Lifting Vortex	163
99. The Generation of Circulation.	166
100. The Starting Resistance	
101. The Velocity Field in the Vicinity of the Airfoil	170
102. Application of Conformal Mapping to the Flow round Flat or	
Curved Plates	173
103. Superposition of a Parallel Flow and a Circulation Flow	176
104. Determination of the Amount of Circulation	178
105. Joukowsky's Method of Conformal Mapping.	
106 Mapping of Airfoil Profiles with Finite Tail Angle	
C. Three-dimensional Airfoil Theory	185
107. Continuation of the Circulation of the Airfoil in the Wing-tip	
Eddies	185
108. Transfer of the Airplane Weight to the Surface of the Earth.	186
109. Relation between Drag and Aspect Ratio	188
110. Rough Estimate of the Drag.	189
111. The Jump in Potential behind the Wing.	191
112. The Vortex Sheet behind the Wing with Lift Tapering Off	
toward the Tips	195
113. The Downward Velocity Induced by a Single Vortex Filament.	197
114. Determination of the Induced Drag for a Given Lift Distri-	
bution	
115. Minimum of the Induced Drag; the Lift Distribution of an	000
Airfoil of Given Shape and Angle of Attack	
116. Conversion Formulas.	206
117. Mutual Influence of Bound Vortex Systems; The Unstaggered	
Biplane	210
118. The Staggered Biplane	213
119. The Total Induced Drag of Biplanes	216
120. Minimum Theorem for Multiplanes.	219
121. The Influence of Walls and of Free Boundaries.	222
122. Calculation of the Influence for a Circular Cross Section	224
CHAPTER VII	
	000

EXPERIMENTAL METHODS AND APPARATUS.	
A. Pressure and Velocity Measurements.	226
123. General Remarks on Pressure Measurement in Liquids and	
Gases	226
124. Static Pressure	226
125. Total Pressure	228
126. Velocity Measurement with Pitot-static Tube	229

xii

		PAGE
127.	Determination of the Direction of the Velocity	. 232
128.	Fluid Manometers	. 232
129.	Sensitive Pressure Gages	. 234
	Vane Wheel Instruments	
	Electrical Methods of Velocity Measurement	
	Velocity Measurements in Pipes and Channels	
	Venturi Meter	
	Orifices	
135.	Weirs	. 246
136.	Other Methods for Volume Measurement	. 246
	ag Measurements	
137.	The Various Methods.	. 247
138.	Towing Tests	. 247
139.	The Method of Free Falling.	. 247
	Rotating-arm Measurements.	
141.	Drag Measurement in the Natural Wind	. 250
	Advantages of Drag Measurement in an Artificial Air Stream	
	nd Tunnels	
	The First Open Wind Tunnels of Stanton and Raibouchinsky	
	The First Closed Wind Tunnels in Göttingen and London.	
	The First Wind Tunnel of Eiffel with Free Jet.	
	Modern English Tunnels	
147.	The Large Wind Tunnel in Göttingen.	. 258
	Wind Tunnels in Other Countries	
	Suspension of the Models and Measurement of the Forces.	
	The Three-component Balance in Göttingen.	
	The Aerodynamic Balance of Eiffel.	
	Jualizing Flow Phenomena	
152.	Fundamental Difficulties	265
	Mixing Smoke in Air Streams	
	Motions in the Boundary Layer	
155.	Three-dimensional Fluid Motions.	267
	Two-dimensional Fluid Motions	
	Advantage of Photographs over Visual Observations	
	Streamlines and Path Lines	
	Slow and Fast Moving Pictures	
	Long-exposure Moving Pictures	
	Technical Details.	
101.		. 411
PLATES	, 3	. 277

xiii