CONTENTS

			rage
Forew	ord		v
Preface	e to tl	he third (revised) edition	vii
Chapte	er I. 🗍	The Steady-State Stokes Equations.	1
	Intr	oduction	1
§1.	Som	e function spaces	1
	1.1.	Notation	1
	1.2	A density theorem	5
	1.3	A trace theorem	9
	1.4	Characterization of the spaces H and V	13
§2.	Existence and uniqueness for the Stokes equations		20
	2.1	Variational formulation of the problem	21
	2.2	The projection theorem	23
	2.3	The unbounded case	29
	2.4	The non-homogeneous Stokes problem	31
	2.5	Regularity results	32
	2.6	Eigenfunctions of the Stokes problem	38
§3.	Disc	retization of the Stokes equations (I)	39
	3.1	Approximation of a normed space	40
	3.2	A general convergence theorem	44
	3.3	Approximation by finite differences	48
§4.	Discretization of the Stokes equations (II)		65
	4.1	Preliminary results	66
	4.2	Finite elements of degree 2 $(n = 2)$	74
	4.3	Finite elements of degree 3 $(n = 3)$	99
	4.4	An internal approximation of V	104
	4.5	Nonconforming finite elements	112

Contents		ix	
			Page
§5.	Nun	nerical algorithms	138
	5.1	Uzawa algorithm	138
	5.2	Arrow–Hurwicz algorithm	142
	5.3	Discrete form of these algorithms	145
§6.	The	penalty method	147
	6.1	Convergence of u_c to u	148
	6.2	Asymptotic expansion of u_{ϵ}	151
	6.3	Numerical algorithms	154
Chapte	er II.	The Steady-State Navier–Stokes Equations	157
	Intro	oduction	157
§1.	Exis	tence and uniqueness theorems	157
	1.1	Sobolev inequalities and compactness theorems	158
	1.2	The homogeneous Navier-Stokes equations	160
	1.3	The homogeneous Navier–Stokes equations	168
	1.4	The non-homogeneous Navier–Stokes equations	173
§2.	Disc	rete inequalities and compactness theorems	180
	2.1	Discrete Sobolev inequalities	180
	2.2	A discrete compactness theorem for step functions	187
	2.3	Discrete Sobolev Inequalities for non conforming	102
	2.4	finite elements	192
	2.4	finite elements	196
§3.	§3. Approximation of the stationary Navier–Stokes equation		199
	3.1	A general convergence theorem	199
	3.2	Applications	205
	3.3	Numerical algorithms	218
§4.	Bifu	rcation theory and non-uniqueness results	223
	4.1	The Taylor problem. Preliminary Results	224
	4.2	A spectral property of B	234

	4.3 4.4	Elements of the topological degree theory The non uniqueness theorem	Page 242 244
Chapte	r III.	The Evolution Navier–Stokes Equations	247
	Intro	oduction	247
§1.	The l	linear case	247
	1.1	Notations	248
	1.2	The existence and uniqueness theorem	252
	1.3	Proof of the existence in Theorem 1.1	255
	1.4	Proof of the continuity and uniqueness	260
	1.5	Miscellaneous remarks	264
§2.	Com	pactness theorems	269
	2.1	A preliminary result	270
	2.2	A compactness theorem in Banach spaces	271
	2.3	A compactness theorem involving fractional derivatives	273
§3.	Exis	tence and uniqueness theorems ($n \leq 4$).	278
	3.1	An existence theorem in \mathbb{R}^n $(n \leq 4)$	279
	3.2	Proof of Theorem 3.1	283
	3.3	Regularity and uniqueness $(n = 2)$	291
	3.4	About regularity and uniqueness $(n = 3)$	295
	3.5	More regular solutions	299
	3.6	Relations between the problems of existence and	
		uniqueness $(n = 3)$	308
	3.7	Utilization of a special basis	313
	3.8	The special case $f = 0$	318
<u></u> §4.	Alte	rnate proof of existence by semi-discretization	320
Ũ	11	Statement of the problem	320
	4.1 4.2	The approximate solutions	320
	43	A priori estimates	325
	4.4	Passage to the limit	328
		-	

Contents

x

	Contents	xi
		Page
§5. Dis	cretization of the Navier–Stokes equations:	
Ge	neral stability and convergence theorems	331
5.1	Description of the approximation schemes	332
5.2	2 Stability of the Schemes 5.1 and 5.2	336
5.3	3 Stability of Scheme 5.3	340
5.4	Stability of Scheme 5.4	344
5.5	A complementary estimate for Scheme 5.2	348
5.6	Other a priori estimates	349
5.1	Convergence of the numerical schemes	352
§6. Dis	cretization of the Navier–Stokes equations:	
Ар	plication of the general results	364
6.1	Finite Differences (APX1)	365
6.2	Finite Elements (APX2), (APX3), (APX4)	374
6.3	Non Conforming finite elements (APX5)	381
6.4	Numerical algorithms. Approximation of the	
	pressure	386
§7. Ar	proximation of the Navier–Stokes equations	
by the Projection Method		
7.	A Scheme with two intermediate steps	397
7.2	2 A Scheme with $n + 1$ intermediate steps	409
7.:	3 Convergence of the Scheme	417
§8. Ar	proximation of the Navier–Stokes equations	
ů by	the artificial compressibility method	426
8.	Study of the perturbed problems	427
8.2	2 Convergence of the perturbed problems to the	
	Navier–Stokes equations	440
8.	Approximation of the perturbed problems	443
Aţ	ppendix I	
Pro	operties of the curl operator and application to the	
	steady state Navier-Stokes equations	458

Appendix II (by F. Thomasset)	Page
Implementation of non-conforming linear finite elements	472
Comments	493
Additional comments to the revised edition	500
References	502
Subject Index	525

Contents

xii