CONTENTS

3

PREFACE

INTRODUCTORY LECTURE

C.A. BREBBIA "Approximate models for fluid flow"

SECTION 1 GENERAL VISCOUS FLOW

1.	P.J. ROACHE "Semidirect calculation of steady two- and three dimensional flows"	17
2.	R. GLOWINSKI, B. MANTEL, J. PERIAUX and O. PIRONNEAU "H ⁻¹ least squares method for the Navier-Stokes equations"	29
3.	R. PEYRET "A Hermitian finite difference method for the solution of the Navier-Stokes equations"	43
4.	J.D. WASKIEWICZ and C.H. LEWIS "Parabolized Navier-Stokes solutions for hyper- sonic viscous flows over blunt cones at large angles of attack"	55
5.	S.C.R. DENNIS and J.D. HUDSON "A difference method for solving the Navier- Stokes equations"	69
6.	J.Z. JOHNSON and B. TABARROK "Stream function - stress function approach to incompressible flows"	81
7.	G.E. SCHNEIDNER, G.D. RAITHBY and M.M.YOVANOVICH "Finite element analysis of incompressible fluid flow incorporating equal order pressure and velocity interpolation"	89
8.	D.K. GARTLING and P.J. ROACHE "Efficiency trade-offs of steady-state methods using FEM and FDM"	103

9.	A. DI CARLO, R. PIVA and G. GUI "Numerically mapped macro-elements for multiply connected flow fields"	113
10.	P. BAR-YOSEPH, J.J. BLECH and A. SOLAN "Upwind schemes for the finite element solution of the Navier-Stokes equations in rotating flow"	121
11.	P.McCOMBER, G. TOUZOT and J.F. COCHET "A comparison of different finite elements and formulations for the solution of the steady viscous flow"	133
12.	A. KANARACHOS "Ritz-Galerkin and least squares finite element methods for incompressible viscous flow"	147
13.	K.E. BARRETT and G. DEMUNSHI "Numerical methods for recirculating flow"	159
14.	F. FEUILLEBOIS and A. LASEK "Significant degeneracies of the equations of a suspension for large Reynolds number"	171
15.	M. BERCOVIER and O. PIRONNEAU "Comparisons and error estimates for several finite elements for the numerical simulation of incompressible viscous flows"	179
16.	C.J. BATES and P.K. BANERJEE "Laminar flow measurements in a square duct using Laser Doppler anemometry"	191

SECTION 2 TURBULENT FLOW

1.	A.J. BAKER "Finite element analysis of turbulent flows"	203
2.	S.F. BIRCH "Turbulent length scales in non-equilibrium flows"	231
3.	D.R. SCHAMBER and B.E. LAROCK "Computational aspects of modelling turbulent flows by finite elements"	2.45
4.	F.J.K. IDERIAH "On turbulent forced convection in a square cavity"	257
5.	A.D. GOSMAN and C.W. RAPLEY "A prediction method for fully-developed flow through non-circular passages"	271

6.	H. HA MINH and P. CHASSAING "Some numerical predictions of incompressible turbulent flows"	287
7.	U. RICKLEFS., L.E. FINK and C.R. SYMES "Predictions of the wake behind circular cylinders in nearly homogeneous turbulent streams"	301
8.	R.M. LI, J.D. SCHALL and D.B. SIMONS "Modeling of turbulent intensity in open channel flows"	317
9.	I.P. CASTRO "The numerical prediction of recirculating flows"	329
10.	C. TAYLOR, J.J. HARPER, T.G. HUGHES and K. MORGAN "An analysis of developing turbulent flow in a circular pipe by the Finite Element Method"	341
SEC1	TION 3 BOUNDARY LAYER ANALYSIS	
1.	D.L.DWOYER, C.H. LEWIS and J.A. HILL "Laminar and/or turbulent three-dimensional incompressible boundary layers including surface heat transfer and curvature effects"	353
2.	C.M. BRAUNER, M.H. CROLET, M. MISITI and B.GAY "Optimal control of the laminar boundary layer by blowing or suction at the wall"	369
3.	E. ZAGUSTIN, R. KALABA and G. IKEDA "Solution of the Falkner-Skan equation by quasi- linearization"	379
4.	S.F. WORNOM "Application of higher-order numerical methods to the boundary layer equations"	387
5.	M. HANIN, M. WOLFSHTEIN and U.E. LANDAU "Numerical Navier-Stokes solution for the effects of suction on shock wave-boundary layer interaction	399 ''
6.	J. SCHROPPEL and J. THIELE "Numerical method for the calculation of binary gas mixture condensation in boundary layer flow"	411
7.	E.H. HIRSCHEL	421

7. E.H. HIRSCHEL 4 "Boundary-layer equations in holonomic formulation" V. LOSITO and C. De NICOLA
"A new viscous-inviscid flow interaction method"

433

SECTION 4 FLOW WITH HEAT TRANSFER

1.	A.MOULT, V.S. PRATAP and D.B. SPALDING "Calculation of steady, two-dimensional, two- phase flow and heat transfer in a steam generator"	443
2.	J.G.M. De BRUIJN and M.W. HESLENFELD "Multimode heat transfer in sodium pumps"	455
3.	A.J. OLIVER "A finite difference solution for turbulent flow and heat transfer over a backward facing step in an annular duct"	467
4.	S. NAKAZAWA, M. KAWAHARA and K. HASEGAWA "On the finite element analysis of thermal diffusion"	479
5.	D.K. GARTLING "Finite element analysis of convective heat transfer problems with change of phase"	489
6.	K. ANTONOPOULOS, A.D. GOSMAN and R. ISSA "Flow and heat transfer in tube assemblies"	501
7.	J.N. LILLINGTON "A comparison of finite difference methods for the prediction of temperature in recirculating flows in rod cluster geometry"	515
8.	J. DONEA, S. GIULIANI and H. LAVAL "Explicit finite element solution to transient convective-conductive heat transfer problems"	527
9.	B.P.L. PANDE and G. AL-MASHIDANI "Temperature distribution profiles for bluff buoyant jets"	539
10.	A.R. CHANDRUPATLA and V.M.K. SASTRI "Laminar flow and heat transfer to a power law, pseudoplastic fluid in the entrance region of a square duct with uniform axial and peripheral heat flux"	547

- 11. V.M. SOUNDALGEKAR and G.A. DESAI 559 "Heat transfer in the entry length with laminar flow in concentric annuli with constant heat flux"
- 12. R.J. SHARMA, R.J. HOPKIRK and P.J. PRALONG 569 "Practical developments in the modelling of turbulent heat transfer"

SECTION 5 FREE SURFACE FLOWS AND LUBRICATION

1.	U. MEISSNER "An explicit-implicit finite-element concept for the solution of long-period water-wave problems"	587
2.	E.W. MINER, M.J. FRITTS and O.M. GRIFFIN "A finite-difference method for calculating free surface waves"	597
3.	J. MOE, J.P. MATHISEN and S. HODGINS "An improved method for the computation of shallow water waves"	609
4.	G. AL-MASHIDANI and B.B.L. PANDE "Kinematic wave approximation to two dimensional surface run off models"	619
5.	F. MARTELLI and G.P. MANFRIDA "Some applications of finite element technique in journal bearings hydrodynamics"	627
6.	H.P. EVANS, S. BISWAS and R.W. SNIDLE "Numerical solution of isothermal point contact elastohydrodynamic lubrication problems"	639
7.	M.J. O'CARROLL "A finite element for a mild singularity in lubrication"	657
8.	M. ONOFRI, R. PIVA and A. SESTIERI "Dynamic behaviour of a slider bearing flow under	665
9.	a time dependent loading" G.B. EKE and J.O. MEDWELL "Turbulent flow between surfaces in relative motion"	673

SECTI FLOW	ON 6 TURBOMACHINERY AND AIRFOIL	
1.	W.G. HABASHI and E.G. DUECK "The finite element method for turbomachinery analysis"	689
2.	U.K. SINGH "Computation of transonic flows in cascade with shock and boundary layer interaction"	697
3.	P. SEROU and L.F. TSEN "Incompressible turbulent flow in 2-D air intake at high incidence by finite element method"	709
4.	C. BOSMAN and J. HIGHTON "The computation of three-dimensional viscous, compressible flow"	717
5.	A.L. MURRAY and C.H. LEWIS "Hypersonic three-dimensional viscous shock layer flows"	731
6.	D.R. CROFT, P.D. WILLIAMS and S.N. TAY "Numerical analysis of jet pump flows"	741
	ON 7 TWO PHASE FLOW AND	
METEC	DROLOGY A.A. LAKIS "Numerical analysis of wall-pressure fluctuations in two-phase flow"	757
2.	J. STEPPLER "On the use of high order finite elements for initial value problems"	769
3.	H.N. LEE "Finite element numerical study of atmospheric turbulent motion and diffusion in planetary boundar layer"	781 y
4.	D.B. HAIDVOGEL "Limited-area integration of the baratropic	793

"Limited-area integration of the baratropic vorticity equation: an intercomparison of the finite difference, finite element and pseudospectral techniques"

SECTION 8 MASS TRANSPORT AND CONVECTION

1.	B.P. LEONARD, M.A. LESCHZINER and J.McGUIRK "Third-order finite-difference method for steady two-dimensional convection"	807
2.	M. KATAGIRI and I. POP "Transient free convection on an isothermal sphere"	821
3.	D.A.H. JACOBS and J.F. MacQUEEN "Some numerical methods used in the study of warm water discharges"	831
4.	C.J. SCOTT and P.H. SHIPP "Temperature and moisture variations in stored grains"	851

SECTION 9 NUMERICAL AND

MATH 1.	EMATICAL CONCEPTS M.D. OLSON and S.Y. TUANN "Computing methods for recirculating flow in a cavity"	873
2.	W. SCHONAUER, G. GLOTZ and K. RAITH "Self-adaptive solution techniques for difference methods"	885
3.	D. CUNSOLO and P. ORLANDI "Accuracy in non orthogonal grid reference systems"	899
4.	H. ZIENKIEWICZ and L.A. BONSON "Theoretical prediction of some arterial flows"	913
5.	R.J. HANSEN and M.D. KELLEHER "Numerical study of the hydrodynamic stability of pipe flows of Newtonian and viscoelastic fluids by a Chebyshev expansion function method"	923
6.	J.C. HEINRICH, P.S. MARSHALL and O.C. ZIENKIEWICZ "Penalty function solution of coupled convective and conductive heat transfer"	935

7.	J.F. MILTHORPE and G.P. STEVEN "A nodal finite element solution technique for simple and complex fluid flow problems"	947
8.	S.F. SHEN, M.A. MORJARIA and R.K.UPADHYAY "A special-element technique for two-dimen- sional creeping viscous flow in a domain with sharp corners"	959
9.	A. PRAMILA and E-M SALONEN "A u,v-formulation for ideal fluid flow"	971
10.	R.L. SANI, P.M. GRESHO, D.R. TUERPE and R.L. LEE "The imposition of incompressibility constraints via variational adjustment of velocity fields"	983
11.	L.C. WELLFORD, Jr. "Calculation of free surface hydrodynamic problems using a finite element method with a hybrid Lagrange line"	995