Contents

1.	Introduction. By H. L. Swinney and J. P. Gollub	1
	1.1 Experimental Difficulties and Advances	1
	1.2 Hydrodynamic Stability and Bifurcation	3
	1.3 Dynamical Systems	3
	1.4 Convection, Rotation, and Shear Flows	4
	1.5 Instabilities in Geophysics and Nonhydrodynamic Systems	5
	1.6 Summary	5
Re	eferences	6
2.	Strange Attractors and Turbulence. By O. E. Lanford (With 1 Figure) 2.1 Basic Principles	7 7
	2.2 Some Elements of the Qualitative Theory of Differential Equations	10
	2.3 Statistical Theory	19
Re	eferences	25
3.	Hydrodynamic Stability and Bifurcation	
	By D.D.Joseph (With 14 Figures).	27
	3.1 The Navier-Stokes Equations and the Prescribed Data	
	3.2 Uniqueness and Stability of Solutions when the Reynolds	
	Number is Small.	30
	3.3 Instability and Transition into Turbulence	32
	3.4 Examples of Hydrodynamic Stability and Bifurcation	37
	3.5 A Simplified Mathematical Discussion of some General Proper-	
	ties of Stability and Bifurcation	42
	3.6 Isolated Solutions Which Perturb Bifurcation	52
	3.7 Bifurcation of Steady Flow into Time-Periodic Flow	56
	3.8 Finite Dimensional Projections.	61
	3.9 Bifurcation, Stability, and Transition in Poiseuille and Couette	
	Flows	67
	3.10 Bibliographical Notes and Comments on Methods of Analysis .	70
R	eferences	73
4.	Chaotic Behavior and Fluid Dynamics	
	By J. A. Yorke and E. D. Yorke (With 4 Figures)	77
	4.1 Background	77
	4.2 The Lorenz Equations	78
	<u>^</u>	

VIII Contents

 4.4 One-Dimensional Maps: A Continuous Transition to Chaos via an Infinite Cascade of Bifurcations. 4.5 Long-Term Average Behavior 	4.3 Landau's Idea: A Continuous Transition to Turbulence via an
Infinite Cascade of Bifurcations4.5 Long-Term Average Behavior4.6 Metastable Chaotic States	Infinite Cascade of Bifurcations
4.5 Long-Term Average Behavior4.6 Metastable Chaotic States	4.4 One-Dimensional Maps: A Continuous Transition to Chaos via an
4.6 Metastable Chaotic States	Infinite Cascade of Bifurcations
	4.5 Long-Term Average Behavior
References	4.6 Metastable Chaotic States
	ferences

5. Transition to Turbulence in Rayleigh-Bénard Convection

9 7
97
)0
)0
)2
)6
)6
)9
13
16
16
18
21
24
24
25
26
29
32
33

6.	Inst	abilities and Transition in Flow Between Concentric Rotating
	Cyl	inders. By R. C. DiPrima and H. L. Swinney (With 9 Figures) 139
	6.1	Background
	6.2	Instability of Couette Flow
	6.3	Growth of Taylor Vortices
	6.4	Wavy Vortex Flow
	6.5	Higher Instabilities and Turbulence
		6.5.1 Flow Visualization Experiments
		6.5.2 Studies of the Flow Spectrum
		6.5.3 Summary of the Experiments
		6.5.4 Model Systems
	6.6	Finite Annulus Length Effects
		$nces \ldots 176$

7. Shear Flow Instabilities and Transition
By S.A.Maslowe (With 10 Figures)
7.1 Overview
7.2 Linear Stability via the Normal Mode Approach
7.2.1 The Orr-Sommerfeld Equation.
7.2.2 The Rayleigh Equation
7.2.3 The Reynolds Stress
7.2.4 Broken-Line Profiles
7.2.5 Asymptotic Solution of the Orr-Sommerfeld Equation 194
7.2.6 Numerical Solution of the Rayleigh and Orr-Sommerfeld
Equations
7.3 The Linear Initial-Value Problem
7.3.1 Inviscid Theory
7.3.2 The Initial-Value Problem at Finite Reynolds Number 203
7.3.3 Wave Packets
7.4 Nonlinear Theories
7.4.1 Weakly Nonlinear Theory
7.4.2 The Nonlinear Critical Layer
7.4.3 Time Dependence and the Nonlinear Critical Layer 215
7.5 Transition Experiments and some Theoretical Offspring 216
7.5.1 Free Shear Layer Transition
7.5.2 Boundary Layer Transition
7.5.3 Poiseuille Flow
7.6 Concluding Remarks
References

8. Instabilities in Geophysical Fluid Dynamics

By	D.J. Tritton and P.A. Davies (With 23 Figures)
8.1	Overview
8.2	Consequences of Instabilities in Nature
8.3	Stratified Shear Flow
	8.3.1 The Richardson Number
	8.3.2 Stably Stratified Free Shear Layers
	8.3.3 Wall Flows
	8.3.4 Horizontal Shear
8.4	Shear Flows in Rotating Fluids
	8.4.1 Stabilizing and Destabilizing Effects of Rotation 242
	8.4.2 Theoretical and Experimental Examples
	8.4.3 The β Effect
8.5	Baroclinic Instability in a Rotating Fluid
	8.5.1 The Eady Problem
	8.5.2 Symmetric Baroclinic Instability
	8.5.3 Annulus Experiments
	8.5.4 Two-Layer Flows

X Contents

8.6 Multidiffusive Instabilities	8
8.6.1 Linear Stability Theory	
8.6.2 Diffusive Layering	
8.6.3 Salt Fingers	2
8.6.4 Sideways Diffusive Instability	
8.6.5 Nonthermohaline Double Diffusion	4
References	5
9. Instabilities and Chaos in Nonhydrodynamic Systems By J. M. Guckenheimer (With 7 Figures)	71
9.1 The Rikitake Dynamo Model for the Earth's Magnetic Field	
9.2 The Belousov-Zhabotinskii Chemical Reaction	
9.3 A Model for Population Dynamics	
9.4 The van der Pol Equation	17
9.5 A Dynamical Systems Analysis of the van der Pol Model 28	30
9.6 Discussion	35
References	36
Subject Index	39