Contents

Translation	Edi	itor'	S .	Pref	ace			•	•		•	•			•	•	•	v
Foreword			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vii

Chapter 1. Experimental Study of Shock-wave Structure

[1] Creation and Structure of Shock-Waves		. 1
[1] Introduction		. 1
[2] Origin of the Discontinuity in an Ideal Fluid. The Hug	goni	ot
Curve	•	. 3
[3] Dissipative Processes in Shock Waves	•	. 8
[4] Shock Waves in Multiatomic Gases	•	. 16
[2] Relaxation Processes in Gases (Elementary Theory)		. 20
[1] Establishment of the Maxwellian Distribution		. 21
[2] Excitation of Rotational Degrees of Freedom		. 23
[3] Excitation of Vibrational Degrees of Freedom		. 26
[4] Molecular Dissociation and Ionization		. 32
[5] Sequence of Relaxation Processes in Shock Waves .		. 35
[3] Experimental Study of the Shock-wave Structure.		. 37
[1] Obtaining the Shock Wave. Simplified Theory of the		
Shock Tube		. 37
[2] The Quantities Being Measured		. 43
[3] Measuring Methods	•	. 45

Chapter 2. The Shock Tube

[4]	Methods of Obtaining Strong Shock Waves	•	•	•	•	49
[5]	Gasdynamic Flows in Shock Tubes					61
[6]	Inhomogeneity of the Flow Behind the Shock Front		•			72
	[1] Inhomogeneity of the Flow Along the Plug	•	•		•	73
	[2] Multidimensionality of the Flow				•	80
	[3] Heat Transfer by Radiation					89
[7]	Auxiliary Measurements of Flow Variables in Shock	Tu	bes	5	•	91

Relaxation in Shock Waves

[1] Measuring the Shock-wave Velocity		•	91
[2] Measuring the Initial Pressure and Temperature			98
[3] Preparing the Test Gas			100

Chapter 3. Experimental Methods of Study of Nonequilibrium Phenomena in Shock Waves

[8]	General Requirements of the Recording	gА	ppa	irat	us.				•	104
[9]	Certain Relationships for the Flow of I	Not	nequ	uilit	oriun	n C	Jas	•		110
[10]	Measuring the Gas Density		•	•				•		117
	[1] Study of the Reflection of Light fro	m	a Sł	locł	c Fro	ont		•		117
	[2] The Tepler Shlieren Scheme		•	•				•		121
	[3] The Interferometer Method		•	•						126
	[4] The Electron Beam Method .								•	133
	[5] The Use of X-ray Radiation .	•	•	•			•	•		136
[11]	Absorption Methods of Molecular Con	cer	ntra	tion	Me	asu	irer	ner	ıt	138
	[1] Dependence of the Absorption on t	he	Mo	lecu	lar					
	Concentration	•		•			•	•	•	140
	[2] The Ultraviolet Spectral Region	•					•	•		143
	[3] Determining the Relaxation Time a	nd	Dis	soc	iatio	n I	Rat	e		148
	[4] The Visible Spectral Region .			•			•		•	157
[12]	Optical Study of Gases			•					•	163
	[1] Dependence of the Radiation on th	e C	onc	ent	ratic	on (of t	he		
	Gas Components	•					•	•		163
	[2] Recording Methods and Some Resu	ılts		•			•	•		168
	[3] Temperature Measurement			•				•	•	174
[13]	Measuring the Electron Concentration		•				•	•		180
	[1] The Methods of Probes	•	•	•				•	·	180
	[2] Microradiowave Techniques.	•	•				• '		•	182
	[3] The Magnetic Induction Method	•					•	•	•	188
	[4] Using the Stark Effect	•					•			191
	[5] Recording the Optical Radiation	•	•	•						193
	[6] The Interferometer Method	•	•	•			•		•	195
[14]	Other Methods of Measurement .			•						196
	[1] Thermal Measurements			•					•	197
	[2] Chemical Analysis						•			198
	[3] Gasdynamic Experiments									201

Chapter 4. Relaxation Processes in Shock Waves

[15] Establishir	g a	Maxwellian	Distribution								206
------------------	-----	------------	--------------	--	--	--	--	--	--	--	-----

х

Contents

[16] Rotational Relaxation	215
[17] Vibrational Relaxation	225
[1] Kinetic Equations and the Transition Probabilities	227
[2] Vibrational Relaxation of Diatomic Molecules which	
Comprise a Small Admixture in a Monatomic Gas	243
[3] Vibrational Relaxation in Pure Gases and in Mixtures	
with a Monatomic Gas	251
[4] Vibrational Relaxation of a Mixture of Polyatomic Gases .	267
[18] Thermal Dissociation Kinetics	271
[1] Thermal Dissociation as Molecular Transition from the	
Discrete to the Continuous Vibrational State	275
[2] Thermal Dissociation in a Single-component System.	281
[3] Concurrent Consideration of the Thermal Dissociation and	
Vibrational Relaxation of Diatomic Molecules	286
[19] Thermal Ionization Kinetics.	293
[20] "Nonequilibrium" Radiation of Gases Behind the Front of	
Strong Shock Waves.	302

Chapter 5. Nonequilibrium Phenomena in Shock Waves in Air

[21] High-temperature Thermody	'nar	nic	c and	Op	tica	1Pro	ope	ertie	es o	f A	ir	306
[22] Vibrational Relaxation .										•		313
[23] Chemical Reaction Kinetics				•								322
[24] Thermal Ionization Kinetics	s an	d	None	qui	libr	ium	R	adia	atio	n		341

Chapter 6. Flow of a Gas Undergoing Relaxation

[25] Introduction	. 348
[26] Equations of Relaxation Gasdynamics.	. 349
[1] Gaskinetic Methods for Obtaining Equations of	
Equilibrium and Relaxation Gasdynamics	. 349
[2] The Use of Methods of Thermodynamics of Irreversible	
Processes	. 352
[27] Certain Properties of the Motion of Fluids Undergoing	
Relaxation. Transition to Equilibrium Gasdynamics.	. 358
[28] The Case of Several Nonequilibrium Parameters	. 363
References	. 365
Author Index	. 385
Subject Index	. 388