Contents

PART I

CHAPTER	PAGE	
Introduction	ix	
Acknowledgments	xxiii	
1. Basic Hydrodynamics	3	
1.1 The laws of conservation of momentum and mass	3	
1.2 Helmholtz's theorem	7	
1.3 Potential flow and Bernoulli's law	9	
1.4 Boundary conditions	10	
1.5 Singularities of the velocity potential	12	
1.6 Notions concerning energy and energy flux	13	
1.7 Formulation of a surface wave problem	15	
2. The Two Basic Approximate Theories		
2.1 Theory of waves of small amplitude	19	
2.2 Shallow water theory to lowest order. Tidal theory	22	
2.3 Gas dynamics analogy	25	
2.4 Systematic derivation of the shallow water theory	27	

PART II

Subdivision A

Waves Simple Harmonic in the Time

3.	Simpl	e Harmonic Oscillations in Water of Constant Depth	37
	3.1	Standing waves	37
	3.2	Simple harmonic progressing waves	45
	3.3	Energy transmission for simple harmonic waves of small ampli-	
		tude	47
	3.4	Group velocity. Dispersion	51
4. Waves Maintained by Simple Harmonic Surface Pressure in Water of Uniform Dopth Forced Oscillations			55
	4 7	Tates de th	~~
	44.1		55
	4.2	The surface pressure is periodic for all values of x	57

xxv

CONTENTS

CHAPTER		PAGE
4.3	The variable surface pressure is confined to a segment of the	
	surface	58
4.4	Periodic progressing waves against a vertical cliff \ldots .	67
5 Waxa	s on Sloping Beaches and Past Obstacles	60
J. Wave	s on Stoping Deaches and Tast Obstacles	09
5.1	Introduction and summary	69
5.2	Two-dimensional waves over beaches sloping at angles $\omega=\pi/2n$	77
5.3	Three-dimensional waves against a vertical cliff	84
5.4	Waves on sloping beaches. General case	95
5.5	Diffraction of waves around a vertical wedge. Sommerfeld's	
	diffraction problem	109
5.6	Brief discussions of additional applications and of other methods	
	of solution \ldots	133

Subdivision B

Motions Starting from Rest. Transients

7 Motions	149
neral formulation of the problem of unsteady motions	149
iqueness of the unsteady motions in bounded domains.	150
tline of the Fourier transform technique	153
otions due to disturbances originating at the surface	156
pplication of Kelvin's method of stationary phase	163
scussion of the motion of the free surface due to disturbances	
tiated when the water is at rest	167
aves due to a periodic impulse applied to the water when	
tially at rest. Derivation of the radiation condition for purely	
riodic waves	174
stification of the method of stationary phase	181
time-dependent Green's function. Uniqueness of unsteady	
otions in unbounded domains when obstacles are present .	187
	Motions

Subdivision C

Waves on a Running Stream. Ship Waves

7. Two	-dimensional Waves on a Running Stream in Water of	
	Uniform Depth	198
7.1	Steady motions in water of infinite depth with $p = 0$ on the	
	free surface	199

XXVI

CONTENTS

XXVII

.

CHAPTER	I	PAGE
7.2	Steady motions in water of infinite depth with a disturbing pres- sure on the free surface	201
7.3	Steady waves in water of constant finite depth	207
7.4	Unsteady waves created by a disturbance on the surface of a	
	running stream	2 10
8. Waves Caused by a Moving Pressure Point. Kelvin's Theory of		
	the Wave Pattern created by a Moving Ship	219
8.1	An idealized version of the ship wave problem. Treatment by	
	the method of stationary phase	219
8.2	The classical ship wave problem. Details of the solution	224
9. The Motion of a Ship, as a Floating Rigid Body, in a Seaway		245
9.1	Introduction and summary	245
9.2	General formulation of the problem	264
9.3	Linearization by a formal perturbation procedure	269
9.4	Method of solution of the problem of pitching and heaving of a	
	ship in a seaway having normal incidence	278

PART III

10. Long	Waves in Shallow Water	291
10.1	Introductory remarks and recapitulation of the basic equations	291
10.2	Integration of the differential equations by the method of char-	
	acteristics	293
10.3	The notion of a simple wave	300
10.4	Propagation of disturbances into still water of constant depth	305
10.5	Propagation of depression waves into still water of constant	
	depth	308
10.6	Discontinuity, or shock, conditions	314
10.7	Constant shocks: bore, hydraulic jump, reflection from a rigid	
	wall	326
10.8	The breaking of a dam	333
10.9	The solitary wave	342
10.1) The breaking of waves in shallow water. Development of bores	351
10.1	1 Gravity waves in the atmosphere. Simplified version of the	
	problem of the motion of cold and warm fronts	374
10.1	2 Supercritical steady flows in two dimensions. Flow around	
	bends. Aerodynamic applications	405
10.1	B Linear shallow water theory. Tides. Seiches. Oscillations in	
	harbors. Floating breakwaters	414

XXVIII

CONTENTS

CHAPTER		PAGE
11. Math	ematical Hydraulics	451
11.1	Differential equations of flow in open channels	452
11.2	Steady flows. A junction problem	456
11.3	Progressing waves of fixed shape. Roll waves	461
11.4	Unsteady flows in open channels. The method of characteristics	469
11.5	Numerical methods for calculating solutions of the differential	
	equations for flow in open channels	474
11.6	Flood prediction in rivers. Floods in models of the Ohio River	
	and its junction with the Mississippi River	482
11.7	Numerical prediction of an actual flood in the Ohio, and at its	
	junction with the Mississippi. Comparison of the predicted with	
	the observed floods	498
Appe	ndix to Chapter 11. Expansion in the neighborhood of the first	
	characteristic	505

PART IV

12. Problems in which Free Surface Conditions are Satisfied Exactly.	
The Breaking of a Dam. Levi-Civita's Theory	513
12.1 Motion of water due to breaking of a dam, and related problems	513
12.2 The existence of periodic waves of finite amplitude	522
12.2a Formulation of the problem	522
12.2b Outline of the procedure to be followed in proving the existence	
of the function $\omega(\chi)$	526
12.2c The solution of a class of linear problems	529
12.2d The solution of the nonlinear boundary value problem	537
Bibliography	545
Author Index	561
Subject Index	563