TABLE OF CONTENTS

	Page
CHAPTER I. KINEMATICS OF DEFORMABLE BODIES	1
1. A Fundamental Theorem of Kinematics	1
2. Review of Vector Analysis	9
3. The Theorems of Gauss, Stokes, and Green	19
4. Some Remarks on Tensor Analysis	26
CHAPTER II. STATICS OF DEFORMABLE BODIES	37
5. Concept of Stress; General Classification of Deformable Bodies	37
6. Equilibrium of Incompressible Fluids (Hydrostatics)	41
7. Statics of Compressible Fluids	49
8. The State of Stress of an Elastic Solid	55
9. Strain-Stress Relations, Elastic Constants, Elastic Potential	61
10. Viscous Pressures and Dissipation, Particularly in Incompressible Fluids .	73
CHAPTER III. DYNAMICS OF DEFORMABLE BODIES	83
11. Euler's Equations for a Perfect Incompressible Fluid	83
12. Derivation of Euler's Equations from Hamilton's Principle. The Pressure,	
a Lagrange Multiplier	89
13. Euler's Equations for the Perfect Compressible Fluid and Their Application	
to Acoustics	94
Appendix. Comparison of Compressible and Incompressible Flows	101
14. Dynamics of the Elastic Body	105
15. The Quasi-Elastic Body as Model of the Ether	108
16. Dynamics of Viscous Fluids. Hydrodynamics and Hydraulics. Reynolds'	
Criterion of Turbulence	113
17. Some Remarks on Capillarity	122
Chapter IV. Vortex Theory	129
18. Helmholtz's Vortex Theorems	129
1. The Differential Form of the Conservation Theorem	129
2. The Integral Form of the Conservation Theorem	132
3. The Spatial Distribution of the Vorticity	135
19. Two- and Three-dimensional Potential Flow	137
20. A Fundamental Theorem of Vector Analysis	147
21. Straight and Parallel Vortex Filaments	154
1. The Single Vortex Filament	154
2. Two Vortex Filaments of Equal Strength and Opposite or Equal Sense	156
3. A Theorem Concerning the "Center of Mass" of Two or More Vortices	$157 \\ 159$
 The Law of Areas for a System of Vortex Filaments General Remarks on the Dynamics of Vortices 	159 160
6. Atmospheric Vortices	160
22. Circular Vortex Rings	
torow torow toringo	101

ix

CONTENTS

	Page
CHAPTER V. THEORY OF WAVES	168
23. Plane Gravity Waves in Deep Water	168
24. Plane Gravity Waves in Shallow and Moderately Deep Water	173
25. Plane Capillary Waves and Combined Capillary-Gravity Waves	180
26. The Concept of Group Velocity	184
27. Circular Waves	191
1. The Periodic Case. Introduction of Bessel Functions	191
2. Single Disturbance. The Fourier-Bessel Integral	194
3. Integration with Respect to k. The Method of the Stationary Phase .	195
 Integration with Respect to α. Discussion of a Limiting Case Ship Waves (Kelvin's Limit Angle and Mach's Angle) 	198
	199
Chapter VI. Flow With Given Boundaries	207
29. Flow Past a Plate	207
30. The Problem of the Wake; Surfaces of Discontinuity	215
31. The Problem of the Free Jet Solved by Conformal Mapping	224
32. Kármán's Vortex Street	231
Appendix, The Drag Problem	239
33. Prandtl's Boundary Layer	241
CHAPTER VII. SUPPLEMENTARY NOTES ON SELECTED HYDRODYNAMIC PROBLEMS	244
34. Lagrange's Equations of Motion	244
35. Stokes' Resistance Law	2 44 2 46
36. The Hydrodynamic Theory of Lubrication	253
37. Riemann's Shock Waves. General Integration of Euler's Equations for a	
Compressible Fluid in One-dimensional Flow	262
38. On Turbulence	271
A. Some Properties of Turbulent Flow	272
B. Older Attempts at a Mathematical Theory of Reynolds' Turbulence	
Criterion	277
C. Reformulation of the Turbulence Problem; the Origin of the Turbu-	
	279
D. The Limiting Case of Isotropic Turbulence	280
E. A Mathematical Model to Illustrate the Turbulence Problem	281
CHAPTER VIII. SUPPLEMENTS TO THE THEORY OF ELASTICITY	285
39. Elastic Limit, Proportional Limit, Yield Point, Plasticity, and Strength .	285
40. Crystal Elasticity	288
41. The Bending of Beams	293
42. Torsion	300
43. Torsion and Bending of a Helical Spring	308
44. The Elastic Energy Content of a Rectangular Parallelepiped	314
45. The Surface Waves of the Elastic Half-Space	326
A. Reflection of a Plane Transverse Spatial Wave	326
B. Elastic Surface Waves	330
PROBLEMS	
Chapter I	336
Chapter II	337

х

CONTENTS

																														1	Page
Chapter	III																														338
Chapter	IV																														340
Chapter	s V a	nd	V	Ι	•			•			•						•														340
Chapter	VII		•	•	•	•	•	•	•					•																	342
Chapter	VIII	ſ		•	•	•	•	•	·	•		•	•	•		•	•	•	•	•		•									343
Answers	AND	Co	M	ME	N'I	rs	•						•	•		•				•	•							3	345	to	379
Appendix	Ι.	•	•	•		•								•		•	•	•	•	•		•	•							•	380
Appendix	II		•		•	•		•	•	•	•	•			•			•						•		•	•				383
Appendix	III				•		•		. •				•	•	•									·				•			385
Appendix	IV	•	•					•																							388
Index .				•					•				•	•		•	•	•					•	•	•		•			•	391

ERRATA

- p. 9, 2nd line of the table: read $\frac{1}{2}e_{xy} = \frac{1}{2}e_{yx}$, etc., instead of $e_{xy} = e_{yx}$, etc.
- p. 61, 3rd and 4th lines of table: read Z_x instead of Z
- p. 99, 13th line: read gr instead of gr-wt
- p. 99, 15th line: read 1.293 instead of 1,293
- p. 113, Eq. (1): read ∇^2 instead of Δ
- p. 181, Fig. 39b is upside down
- p. 233, last equation: read $\tilde{z}_k = \tilde{x}_k + i \bar{y}_k$ instead of $\tilde{z}_k = \tilde{x}_k = i \bar{y}_k$
- p. 234, 6th line: read z_k instead of \bar{z}_k
- p. 234, 7th line: read \dot{z}_0 instead of \bar{z}_0
- p. 289, 2nd line of footnotes: read p. 9 instead of p. 000
- p. 338, 22nd line: omit "and note that they are not equal"
- p. 347, last term of 14th line: read $\frac{\partial A_{\varphi}}{\partial \varphi}$ instead of $\frac{\partial A_{\varphi}}{\partial \varphi}$

p. 348, third formula: read $\nabla^2 \mathbf{A}$ instead of (A grad) A and add:

$$(\mathbf{A} \text{ grad})\mathbf{A} = \begin{cases} \mathbf{A} \cdot \operatorname{grad} A_r - \frac{1}{r}(A_{\vartheta}^2 + A_{\varphi}^2) \\ \mathbf{A} \cdot \operatorname{grad} A_{\delta} + \frac{1}{r}(A_r A_{\vartheta} - A_{\varphi}^2 \cot \delta) \\ \mathbf{A} \cdot \operatorname{grad} A_{\varphi} + \frac{1}{r}(A_r A_{\varphi} + A_{\vartheta} A_{\varphi} \cot \delta) \end{cases}$$

p. 354, line 5: read $|M_e| = |M_i| = 4\pi\mu U r_e r_i^2/(r_e^2 - r_i^2)$ instead of the values given for M_e and M_i , and replace the first part of the next sentence by "The difference $-|M_e|/2\pi r_e + |M_i|/2\pi r_i$ equals $2\mu U/(1 + r_e/r_i)$, which, in the limit, becomes μU ;"

p. 386, Eq. (1): read p_{ik} instead of $_{ik}$

n