CONTENTS

	Introduction	1
I.	 Some equations and formulae of the theory of elasticity Sets of differential equations Fundamental solutions Generalized fundamental solutions Fundamental solutions of the first and second kind Fundamental solutions of the third kind Elastic potentials of an isotropic body Formulae similar to the Poisson formula 	4 10 15 17 21 24 30
п.	 Integral equations of boundary-value problems for homogeneous bodies 1. Boundary properties of the potentials 2. Definition of the boundary-value problems and reduction to integral equations 	37 37 41
ш.	 Conditions at infinity. Uniqueness theorems 1. Non-uniqueness solutions of the oscillation equation 2. Radiation condition 3. Betti's formula for an infinite region 4. Uniqueness theorems for homogeneous and non-homogeneous media 	45 45 49 54 57
IV.	 Integral equations of boundary-value problems for non-homogeneous bodies 1. Formulation of the boundary value problems 2. The integral equations of problem A 3. Integral equations of the problems B₁ and B₂ 4. Integral equations for the static problems B₁ and B₂ 5. Integral equations of the static problems C₁ and C₂ 6. Case of equal Poisson ratios 7. Some other conditions of contact. Cases of effective solutions 	64 64 65 72 74 79 80 83
v.	 Elements of the theory of multi-dimensional singular integral equations 1. Introduction 2. Liapunov surfaces. Principal value of the singular integral 3. Classification of the kernels 4. Giraud's theorems 5. Transformation to local coordinates 6. Problem of regularization 	86 86 90 92 94 97

7. Theorems on sym	bols	101
8. The local-regular	ization operator	107
9. The global-regula	rization operator	115
10. The functional eq	uations of the resolvent, first Fredholm	
theorem		116
11. Consequences fro	m the functional equations of the resolvent	121
12. Second Fredholm	theorem	124
13. Elements of tht th	eory of the resolvent.	129
14. Third Fredholm t	heorem	131
VI Existence theorems	Homogeneous modia	19/
1 Droperties of the	rosolvent	194
2 Evistoneo theorem	resolvent	194
$(D_{\rm r})$ and $(T_{\rm r})$	its for the solutions of the static problems	190
(D_1) and (1_2)	static problems (\mathbf{D}°) and (\mathbf{T}°)	130
A Solution of the old	static problems (Da) and (11)	149
5. Existence theorem	so for the static problem of hobins (D_{i}) and (T_{i})	140
6 Evistence theorem	is for the scale problems (M_{i}) and (T_{1}) .	144
7 The evidence meorer	af the static Creen tensors	145
9. The homogeneous	dynamic problems (\mathbf{D}^2) and (\mathbf{T}^2) Spectra	145
o. The homogeneous	aynamic problems (D ₁) and (1 ₁). Spectra	159
of proper frequen	cies	155
9. Generalized theor	em of Liapunov-Tauper	155
io. The relation bet	ween the solutions of the homogeneous (D°) (D°)	150
problems and equ	$(D_a), (T_i)$ and $(T_a), (D_i)$	100
11. Analysis of the po	lies of the resolvents (D_{1}) and (T_{2})	100
12. Existence theorem	ns for the dynamic problems (D_a) and (T_a)	100
13. Existence incorer	n for the external mixed dynamic problem	160
(Ma)		109
14. Remarks concern	ing multiple poles	112
VII. Existence theorems.	Non-homogeneous media	173
1. The case of equal	Poisson ratios. Existence theorem	173
2. Application of the	successive approximation method	178
3. Existence theorem	ns for problems B ₁ and B ₂	179
4. Existence theorem	n for problem A in the general case	181
5. Existence theorem	ns for the dynamic problems B_1 and B_2	188
6. The equivalence t	heorems. Some auxiliary lemmas	189
7. Equivalence theory	rem for the problem A	194
8. Equivalence theorem	rems for the dynamic problems B_1 and Γ	198
9. Equivalence theory	rems for the static problems B_1 and B_2	201
VIII Annroximate solutio	ns	208
1 Introduction		208
2 Diffraction of ela	stic waves	209
3. Approximate solu	tion of problem (D _i)	215
4 Annrovimate solu	tion of statical problem (T:)	218
5 Approximate solu	tion of problem (D_{a})	221
6 Approximate solu	tion of problem (T_{a})	224
7 Approximate con	struction of Green tensors	226
. Approximate cons		

	On the approximate solution of boundary-value problems for multiply-connected regions	226
9.	Solution of some concrete problems for a doubly-connected region	226
10.	Solution of the first fundamental boundary-value problem for the doubly-connected region	231
11.	Solution of the second fundamental boundary problem for	
	the doubly-connected region	233
12.	Mixed problem for the doubly-connected region	237
13.	The sound dispersion problem	238
14.	Existence theorem for the inverse operator	240
15.	Estimates of errors. Rapidity of convergence	243
16.	Numerical examples. Solution of Gauss' functional equation	246
17.	Numerical examples. Solution of the Dirichlet problem for	
	an elliptic region	251
Ref	ierences	257