PREFACE	·	·	·	·	·	·	·	•	•	٠	٠	•	•	٠	·	·	·	·	•	·	·	·	·	•	•	•	·	·	v
CONTENTS	•	•			•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•			•	•	VII

CHAPTER I

VISCOELASTIC WAVES

by S. C. Hunter

by S. C. Hunter						
1. INTRODUCTION		•				3
 THE LINEAR VISCOELASTIC SOLID	•••	•	•	•	•	4 4 8 11 15
 3. THEORY OF THE PROPAGATION OF UNIAXIAL STRESS PULSE 3.1 Statement of the problem	s.		•		•	16 16 17 22 28
4. EXPERIMENTAL INVESTIGATIONS ON PULSE PROPAGATION \cdot			•		•	32
5. THE GENERAL EQUATIONS OF AN ISOTROPIC VISCOELASTIC 5.1 The generalised equations of viscoelasticity. 5.2 Application of integral transforms. 5.3 Quasi-static viscoelasticity. 5.4 Waves in three dimensions	 			•	•	$44 \\ 44 \\ 48 \\ 50 \\ 52$
REFERENCES						56

CHAPTER II

MATRICES OF TRANSMISSION IN BEAM PROBLEMS by K. Marguerre

1. INTRODUCTION	61
2. The vibrating beam	62
3. matrices for points of discontinuity: supports, single masses, etc.	65
4. RIGID SUPPORTS, Δ -matrix	66
5. Δ -matrices (continued)	73
6. "STIFF" SUPPORTS \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	75
7. Application of the matrix method to more complex problems .	77
REFERENCES	82

CHAPTER III

DYNAMIC EXPANSION OF SPHERICAL CAVITIES IN METALS by H. G. Hopkins

1. :	INTRODUCTION
2. :	methods of approach and objectives
3. :	HOPKINSON'S SIZE-SCALING LAW
4.	strong discontinuities in physical quantities 93
5. :	elastic deformations
	SMALL ELASTIC-PLASTIC DEFORMATIONS
	6.1 Perfectly-plastic material
	6.1 Perfectly-plastic material 113 6.2 Work-hardening material 128 6.3 Characteristics theory of equations 132
7.	large elastic-plastic deformations \ldots \ldots \ldots \ldots 135
	7.1 Fundamental equations 135 7.2 Quasi-static motion 138
	7.2 Quasi-static motion \ldots 138 7.3 Dynamic motion \ldots 144
	7.4 Characteristics theory of equations
8.	CONCLUDING REMARKS
NO	ration
REI	Ferences

CHAPTER IV

GENERAL THEOREMS FOR ELASTIC-PLASTIC SOLIDS by W. T. Koiter

1.	NTRODUCTION \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 167	
2.	basic assumptions and stress-strain relations	
	2.1 Small deformations	
	2.2 General stress-strain relations 171 2.3 Perfectly plastic materials 172	
	2.4 Work-hardening materials	
	2.5 Inversion of stress-strain relations	
	2.6 Historical remarks	
3	JNIQUENESS THEOREMS	
υ.		
υ.	B.1 Boundary value problem for stress rates	
υ.	3.1 Boundary value problem for stress rates1813.2 Proof of uniqueness of stress rates182	
0.	3.1 Boundary value problem for stress rates 181 3.2 Proof of uniqueness of stress rates 182 3.3 Uniqueness of strain rates 182	
υ.	3.1 Boundary value problem for stress rates1813.2 Proof of uniqueness of stress rates182	
	3.1 Boundary value problem for stress rates1813.2 Proof of uniqueness of stress rates1823.3 Uniqueness of strain rates1823.4 Uniqueness of stresses1833.5 Historical remarks185	
	8.1 Boundary value problem for stress rates 181 8.2 Proof of uniqueness of stress rates 182 8.3 Uniqueness of strain rates 182 8.4 Uniqueness of stresses 183 8.5 Historical remarks 185 MINIMUM PRINCIPLES 186	
	3.1 Boundary value problem for stress rates1813.2 Proof of uniqueness of stress rates1823.3 Uniqueness of strain rates1823.4 Uniqueness of stresses1833.5 Historical remarks185	

	4.4 Principles for stresses and strains1894.5 Historical remarks1924.6 The Haar-Kármán principle193	
5.	plastic collapse theorems and limit analysis	
	5.1 Definitions	
	5.2 Formulation of theorems	
	5.3 Proof of theorems	
	5.4 Uniqueness of stresses at collapse	
	5.5 Bounds on overall deformation	
	5.6 Historical remarks	
6.	Shakedown theorems	
	6.1 Definitions	
	6.2 Formulation of theorems	
	6.3 Proof of Melan's theorem	
	6.4 Proof of first part of second theorem	
	6.5 Proof of second part of second theorem	
	6.6 Historical remarks	
7.	EXISTENCE OF SOLUTIONS	
	7.1 Dirichlet's principle	
	7.2 Basic inequality	
	7.3 Existence proof	
	7.4 Concluding remarks	
RE	Ferences	

CHAPTER V

DISPERSION RELATIONS FOR ELASTIC WAVES IN BARS

by W. A. GREEN

1.	INTRODUCTION	5
2.	EXACT SOLUTIONS (POCHHAMMER AND CHREE)	8
3.	ELEMENTARY APPROXIMATE THEORY	0
4.	APPROXIMATE METHODS 1	1
	4.1 Rayleigh's method	1
	4.2 Love's method $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 23$	2
	4.3 Timoshenko's method	
	4.4 Prescott's method. \ldots \ldots \ldots \ldots \ldots \ldots \ldots 23	:4
	4.5 Method of Mindlin and Herrmann	5
	4.6 Volterra's method	6
	4.7 Bishop's correction $\ldots \ldots 23$	57
	4.8 Kynch's method	8
5.	APPROXIMATE METHODS II	9
	5.1 Chree's method	0
	5.2 Morse's method	
	5.3 Method of Kynch and Green	

IX

X CONTENTS							
6. DISCUSSION		•			•		243
7. HIGH FREQUENCY SOLUTIONS FOR A CIRCULAR CYLINDER 7.1 Fundamental dispersion curves for complex modes . 7.2 Dispersion curves for higher harmonics							
7.2 Dispersion curves for higher harmonics	·	٠	٠	•	·	٠	254
NOTATION							260

CHAPTER VI

THERMOELASTICITY. THE DYNAMICAL THEORY

by P. Chadwick

1.	INTRODUCTION	5
2.	THE THERMOELASTIC EQUATIONS	
	2.1 The irreversible thermodynamics of an elastic solid	9
	2.2 Non-equilibrium thermodynamic functions	z
1	2.3 Basic properties of the thermoelastic equations	0
Š.	PLANE HARMONIC THERMOELASTIC WAVES	
	3.1 Uncoupled waves	0
	3.2 Coupled waves	2
	3.1 Uncoupled waves	8
4.	BOUNDARY VALUE PROBLEMS. GENERAL CONSIDERATIONS 29	8
	4.1 Classification of thermoelastic boundary value problems 29	9
	4.2 Approximate forms of the thermoelastic equations	3
5.	THERMOELASTIC BOUNDARY VALUE PROBLEMS	6
	5.1 Thermoelastic Rayleigh waves	7
	5.2 Thermoelastic vibrations of a circular cylinder	2
	5.3 Radially symmetrical thermoelastic disturbances	6
	5.4 Axially symmetrical thermoelastic disturbances	4
RB	STERENCES 32	8

CHAPTER VII

CONTINUOUS DISTRIBUTIONS OF DISLOCATIONS

by B. A. Bilry

1. INTRODUCTION			•			•	331
2. BURGERS VECTOR AND TORSION TENSOR							335
2.1 Discrete dislocations		•		·	•	•	$\frac{335}{227}$
 2.2 The continuously dislocated crystal	:	:	:	:	:	:	339
2.4 Compatibility and the nature state	•	٠	•	٠	•	•	345

3.	SHAPE, LATTICE AND DISLOCATION DEFORMATIONS	3
	3.1 Types of deformation)
	3.2 Analytical relations	Ł
	3.3 The dislocation motion tensor	
4.	ZERO LATTICE PURE STRAIN	9
	4.1 General theory	3
	4.2 Applications	5
	112	·
5.	DISLOCATION DENSITY AND STRESS)
	5.1 The incompatibility tensor)
	5.2 Surface dislocations	
	5.3 The determination of the deformations when the dislocation density	
	is given	3
	5.4 The determination of internal stress	-
	5.5 Discrete dislocations	-
	5.6 Discussion of plastic problems	
		<i>,</i>
6.	GENERALISED SPACES	5
	6.1 The natural state	ă
	6.2 Use of a Riemannian connexion	-
	6.3 Non-Riemannian connexions	~
	6.4 Discussion and generalisations	
	6.5 Application to non-linear elasticity	
		L
7.	CONCLUSION	4
RE	sferences	6

CHAPTER VIII

ASYMMETRIC PROBLEMS OF THE THEORY OF ELASTICITY FOR A SEMI-INFINITE SOLID AND A THICK PLATE

by R. Muki

1.	INTRODUCTION	401
2.	SOLUTION OF THE EQUATIONS OF EQUILIBRIUM BY HANKEL TRANSFORMS	401
3.	SOLUTION OF THE THERMO-ELASTIC EQUATIONS BY HANKEL TRANSFORMS	4 07
4.	STRESSES IN A SEMI-INFINITE ELASTIC SOLID UNDER THE COMPRESSIVE ACTION OF A RIGID BODY 4.1 Introduction 4.2 General solution 4.3 Indentation by a slightly inclined flat-ended cylinder	$\begin{array}{c} 410\\ 411 \end{array}$
5.	STRESSES IN A SEMI-INFINITE ELASTIC SOLID WITH A TANGENTIAL LOAD ON ITS SURFACE5.1 Introduction5.2 General solution5.3 Example	419 419

XI

6. THERMAL STRESSES IN A SEMI-INFINITE ELASTIC SOLID AND A THICK PLATE UNDER STEADY DISTRIBUTION OF TEMPERATURE	
6.1 Introduction	424
 6.3 General solution for a thick plate	426 429 435
REFERENCES	
AUTHOR INDEX	441
SUBJECT INDEX	445

$\mathbf{X}\mathbf{I}\mathbf{I}$