Contents

Preface		VII
Acknow	ledgements	XVII
Part 1. I	Review of basic concepts and equations of fluid dynamics	1
I. Introd	luction to Fluid Dynamics	1
(1)	Fluid Model of Systems	1
(2)	The Objective of Fluid Dynamics	1
(3)	The Fluid State	2
(4)	Description of the Flow Field	3
(5)	Volume Forces and Surface Forces	3
(6)	Relative Motion Near a Point	5
(7)	Stress–Strain Relations	8
(8)	Equations of Fluid Flows	9
	(i) The Law of Conservation of Mass	9
	(ii) Equation of Motion	10
	(iii) The Energy Equation	10
	(iv) The Equation of Vorticity	13
	(v) The Incompressible Fluid	13
(9)	Surface Tension	14
	(i) Capillary Rises in Liquids	16
(10)	A Program for Analysis of the Governing Equations	17
Part 2. I	Dynamics of incompressible fluid flows	19
I. Fluid	Kinematics and Dynamics	19
	Stream Function	19
	Equations of Motion	20
	Integrals of Motion	21
.)	-	IX

	(4)	Capillary Waves on a Spherical Drop	22
	(5)	Cavitation	23
	(6)	Irrotational Flow	24
	(7)	Simple Flow Patterns	25
		(i) The Source Flow	25
		(ii) The Doublet Flow	26
		(iii) The Vortex Flow	27
		(a) Doublet in a Uniform Stream	28
		(b) Uniform Flow past a Circular Cylinder with Circulation	28
п. 1	The (Complex-Variable Method	30
	(1)	The Complex Potential	30
	(2)	Conformal Mapping of Flows	32
	(3)	Hydrodynamic Images	37
	(4)	Principles of Free-Streamline Flow	39
		(i) Schwartz-Christoffel Transformation	39
		(ii) Hodograph Method	45
III.	Thre	ee Dimensional Irrotational Flows	49
	(1)	Special Singular Solutions	49
	()	(i) The Source Flow	50
		(ii) The Doublet Flow	51
	(2)	Image of a Source in a Sphere	52
		Flow past an Arbitrary Body	54
	~ ~	Unsteady Flows	55
		Added Mass of Bodies Moving Through a Fluid	56
īV	Vor	tex Flows	57
		Vortex Tubes	57
		Induced Velocity Field	58
		Biot–Savart's Law	59
	• •	Vortex Ring	64
	• •	Hill's Spherical Vortex	66
		Vortex Sheet	68
	• • •	The Vortex Breakdown: Brooke Benjamin's Theory	70
v	Rot	ating Flows	75
		Governing Equation and Elementary Results	75
	(2)		76
	(3)		76
	(4)	10	77
	• • •	Forced Wavemotion in a Rotating Fluid	79
		(i) The Eliptic Case	80
		(ii) The Hyperbolic Case	81
	(6)	Slow Motion Along the Axis of Rotation	82
	(7)	-	85

VI. Wate	er Waves	88
(1)	Governing Equations	89
	Surface Waves in a Semi-Infinite Liquid	90
(3)	Surface Waves in a Liquid Layer of Finite Depth	90
	Shallow-Water Waves	92
	Water Waves Generated by an Initial Displacement over a Localised	72
~ /	Region	94
(6)	Water Waves Generated by a Finite Train of Harmonic Waves	97
	Waves on a Steady Stream	98
	(i) One-dimensional Gravity Waves	99
	(ii) One-dimensional Capillary-gravity Waves	100
	(iii) Ship Waves	101
(8)	Gravity Waves in a Rotating Fluid	102
	Theory of Tides	103
	Nonlinear Shallow Water Waves	107
	(i) Solitary Waves	109
	(ii) Stokes Waves	111
	(iii) Modulational Instability and Envelope Solutions	112
(11)	Nonlinear Resonant Three-wave Interactions of Capillary-gravity	
	Waves	115
(12)	Second-harmonic Resonance	119
(13)	Hydraulic Jump	122
VII. Ap	plications to Aerodynamics	123
	Airfoil Theory: Method of Complex Variables	123
	(i) Force and Moments on an Arbitrary Body	123
	(ii) Flow Past an Arbitrary Cylinder	124
	(iii) Flow Around a Flat Plate	123
	(iv) Flow Past an Airfoil	120
	(v) Joukowski Transformation	132
(2)	Thin Airfoil Theory	132
	(i) Thickness Problem	135
	(ii) Camber Problem	140
	(iii) Flat Plate at an Angle of Attack	140
	(iv) Combined Aerodynamic Characteristics	145
	(v) The Leading-Edge Problem of a Thin Airfoil	145
(3)	Slender-Body Theory	149
(4)	Lifting-Line Theory for Wings	149
	Oscillating Thin-Airfoil Theory	154
Dart 2 T	Dynamics of community first first	
rart 5. I	Dynamics of compressible fluid flows	165
	w of Thermodynamics	165
(1)	Thermodynamic System and Variables of State	165
(2)	The First Law of Thermodynamics, and Reversible and Irreversible	
	Processes	166
		XI

(3)	The Second Law of Thermodynamics	168
(4)	Liquid and Gaseous Phases	169
(5)	Application of Thermodynamics to Fluid Flows	170
	ropic Flows	171
	The Energy Equation	171
(2)	Stream-Tube Area and Velocity Relations	172
III. Sho	ck Waves	174
(1)	The Normal Shock Wave	175
(2)	The Oblique Shock Wave	180
• • •	Blast Waves: Sedov's Solution	183
IV Flow	vs with Heat Transfer	186
	Rayleigh Flow	186
	Detonation and Deflagration Waves	180
(2)	Detonation and Demagration waves	107
V. Poter	ntial Flows	190
(1)	Governing Equations	190
(2)	Streamline Coordinates	192
(3)	Conical Flows	193
• • •	Small Perturbation Theory	195
	Characteristics	197
VI The	Hodograph Method	209
	The Hodograph Transformation	
	The Lost Solution	209
• •	The Limit Line	213
(3)		214
VII. No	nlinear Theory of Plane Waves	219
(1)	Riemann Invariants	219
(2)	Burgers' Equation	224
VIII A	oplications to Aerodynamics	220
-	Thin Airfoil Theory	228
(1)	(i) Thin Airfoil in a Linearised Supersonic Flow	228
		228
	(ii) Far-Field Behaviour of Supersonic Flow Past a Thin Airfoil	230
(2)	(iii) Thin Airfoil in Transonic Flows	233
(2)	Slender Bodies of Revolution	235
(3)	5	239
(4)	Oscillating Thin Airfoils in Supersonic Flows: Stewartson's Theory	245
Part 4.1	Dynamics of Viscous Fluid Flows	249
I. Exact	Solutions to Equations of Viscous Fluid Flow	249

(1)	Channel Flows	249
(2)	Decay of a Line Vortex	250
(3)	Line Vortex in a Uniform Stream	252
(4)	Diffusion of a Localised Vorticity Distribution	253
(5)	Flow due to a Suddenly Accelerated Plane	257
(6)	The Round Laminar Jet: Landau's Solution	259
(7)	Ekman Layer at a Free Surface in a Rotating Fluid	261
(8)	Centrifugal Flow due to a Rotating Disk	262
(9)	Shock Structure: Becker's Solution	264
(10)	Couette Flow of a Gas	266
II. Flow	s at Low Reynolds Numbers	268
(1)	Dimensional Analysis	268
(2)	Stokes' Flow Past a Rigid Sphere	269
(3)	Stokes' Flow Past a Spherical Drop	271
(4)	Stokes' Flow Past a Rigid Circular Cylinder	274
(5)	Oseen's Flow Past a Rigid Sphere	275
(6)	Oseen's Approximation for Periodically Oscillating Wakes	277
III. Flov	vs at High Reynolds Numbers	280
(1)	Prandtl's Boundary-Layer Concept	281
(2)	The Method of Matched Asymptotic Expansions	281
(3)	Location and Nature of Boundary Layers	285
(4)	Incompressible Flow Past a Flat Plate	288
	(i) The Outer Expansion	288
	(ii) The Inner Expansion	289
	(iii) Flow due to Displacement Thickness	291
(5)	Separation of Flow in a Boundary Layer: Landau's Theory	292
(6)	Boundary Layers in Compressible Flows	294
	(i) Crocco's Integral	296
	(ii) Flow Past a Flat Plate: Howarth–Dorodnitsyn Transformation	297
(7)	Flow in a Mixing Layer Between Two Parallel Streams	299
	(i) Geometrical Characteristics of the Mixing Flow	301
	Narrow Jets	302
• •	Wakes	303
	Periodic Boundary Layer Flows	304
(11)	Effect of Rotation on Flow Past a Flat Plate due to Standing Sound	
	Field	306
	Trey—Hamel Flow	309
• •	The Exact Solution	310
	Flows at Low Reynolds Numbers	313
(3)	Flows at High Reynolds Numbers	317

Part 5. Hydrodynamic stability

I. Introd	luction to Hydrodynamic Stability	319
II. Ther	mal Instability of a Layer of Fluid Heated from Below	320
	The Characteristic-Value Problem	320
(2)	The Variational Problem	324
III. Stat	pility of Couette Flow	327
(1)	Inviscid Couette Flow: Rayleigh Criterion	327
	(i) Heuristic Derivation	327
	(ii) Rigorous Derivation	328
(2)	Viscous Couette Flow: Synge's Theory	330
IV. Ray	leigh–Taylor Instability of Superposed Fluids	337
(1)	The Linear Problem	337
(2)	The Nonlinear Problem	339
V. Kelv	in—Helmholtz Instability	342
(1)	The Stratified Fluid in Nonuniform Streaming	342
(2)	The Case of Two Uniform Fluids in Relative Motion Parallel to the	542
$\langle \mathbf{O} \rangle$	Plane Interface	344
	A Shear Layer in a Stratified Fluid	345
(4)	Stability of an Interface Between a Liquid and a Gas Stream	347
	(i) Subsonic Gas Flow	349
	(ii) Supersonic Gas Flow	350
VI. Cap	illary Instability of a Liquid Jet	351
VII. Sta	bility of Parallel Flows	354
(1)	The Orr—Sommerfeld Equation	355
(2)	The Inviscid Solutions	357
(3)	The Initial-Value Problem: Case–Dikii Theory	360
	(i) Plane Couette Flow	363
	(a) The Normal Mode Approach	363
	(b) The Initial-Value Problem Approach	363
	(c) Convection of an Initially Concentrated Vorticity	366
(4)	Inviscid Stability Theory	368
	(i) Discontinuities in the Mean Flow	368
	(ii) Odd and Even Solutions	369
	(iii) Self-excited and Damped Disturbances	370
	(iv) Local and Global Necessary Conditions for the Existence of	
	Non-Neutral and Neutral Modes	371
	(v) Howard's Semi-Circle Theorem	373
	(vi) Sufficient Conditions for the Existence of Self Excited and	
1	Neutral Modes	374
(5)	Viscous Theory	379

(i) Heisenberg Criterion	381
(ii) General Characteristics of the Neutral Stability Curve	382
(iii) The Stokes Lines	385

Part 6. Dynamics of Turbulence

I. The Origin and Nature of Turbulence	389
II. A Statistical Formalism	390
III. The Probability Density	391
IV. The Auto-Correlation	393
V. The Central Limit Theorem	396
VI. Symmetry Conditions	398
VII. Spectral Theory	399
VIII. Heisenberg's Theory	400
IX. Kolmogorov's Universal Equilibrium Theory	403
X. Taylor's Correlation Theory of Homogeneous, Isotropic Turbulence	404
XI. Von Karman–Howarth Equation	411
XII. Turbulent Dispersion: Lin's Theory	413
Bibliography	417

Subject Index	425
---------------	-----