•	List of Tables	xiii
	Foreword	xv
	Author's Preface to the Seventh (English) Edition	xvii
	Translator's Preface to the Seventh (English) Edition	xix
	From the Author's Preface to the First (German) Edition	xxi
	Introduction	1
	Part A. Fundamental laws of motion for a viscous fluid	
	CHAPTER I. Outline of fluid motion with friction	5
	a. Real and perfect fluids	5
	b. Viscosity	6
	c. Compressibility	.9
	d. The Hagen-Poiseuille equations of flow through a pipee. Principle of similarity; the Reynolds and Mach numbers	$\frac{11}{12}$
	f. Comparison between the theory of perfect fluids and experiment	20
	References	23
	CHAPTER II. Outline of boundary-layer theory	24
	a. The boundary-layer concept	24
	b. Separation and vortex formation	28
	c. Turbulent flow in a pipe and in a boundary layer References	39 44
	CHAPTER III. Derivation of the equations of motion of a compressible viscous fluid (Navier-Stokes equations)	47
	a. Fundamental equations of motion and continuity applied to fluid flow	47
	b. General stress system in a deformable body	49
	c. The rate at which a fluid element is strained in flow	$52 \\ 58$
	 d. Relation between stress and rate of deformation e. Stokes's hypothesis 	- 58 60
	f. Bulk viscosity and thermodynamic pressure	61
	g. The Navier-Stokes equations	64
	References	68
	CHAPTER IV. General properties of the Navier-Stokes equations	70
	a. Derivation of Reynolds's principle of similarity from the Navier-Stokes equations	70
	b. Frictionless flow as "solutions" of the Navier-Stokes equations	72
	c. The Navier-Stokes equations interpreted as vorticity transport equations	$\frac{73}{76}$
	d. The limiting case of very large viscosity (very small Reynolds number)e. The limiting case of very small viscous forces (very large Reynolds numbers)	70
	f. Mathematical illustration of the process of going to the limit $R \rightarrow \infty$	80
	References	82

CHAPTER V. Exact solutions of the Navier-Stokes equations	83
 a. Parallel flow Parallel flow through a straight channel and Couette flow The Hagen-Poiseuille theory of flow through a pipe The flow between two concentric rotating cylinders The suddenly accelerated plane wall; Stokes's first problem Flow formation in Couette motion Flow in a pipe, starting from rest The flow near an oscillating flat plate; Stokes's second problem A general class of non-steady solutions 	83 84 85 87 90 91 92 93 94
 b. Other exact solutions 9. Stagnation in plane flow (Hiemenz flow) 9a. Two-dimensional non-steady stagnation flow 10. Stagnation in three-dimensional flow 11. Flow near a rotating disk 12. Flow in convergent and divergent channels 13. Concluding remark References 	95 95 99 100 102 107 109 110
CHAPTER VI. Very slow motion	112
 a. The differential equations for the case of very slow motion b. Parallel flow past a sphere c. The hydrodynamic theory of lubrication d. The Hele-Shaw flow References 	112 113 116 123 125

Part B. Laminar boundary layers

127
127 131 133 134 135 144 148
150
$\begin{array}{c} 150 \\ 152 \end{array}$
$157 \\ 158 \\ 162$
163
164 166 168 173

e.	Flow in the wake of flat plate at zero incidence	175
f.	The two-dimensional laminar jet	179
	Parallel streams in laminar flow	183

vi

Contents	vii
 h. Flow in the inlet length of a straight channel i. The method of finite differences j. Boundary layer of second order References 	185 187 194 198
CHAPTER X. Approximate methods for the solution of the two-dimensional, steady boundary-layer equations	201
 a. Application of the momentum equation to the flow past a flat plate at zero incidence b. The approximate method due to Th. von Kármán and K. Pohlhausen for two-dimensional flows c. Comparison between the approximate and exact solutions Flat plate at zero incidence Two-dimensional stagnation flow Flow past a circular cylinder Further examples Laminar flow with adverse pressure gradient; separation References 	201 206 214 214 214 215 217 220 223
CHAPTER XI. Axially symmetrical and three-dimensional boundary layers	225
 a. Exact solutions for axially symmetrical boundary layers Rotation near the ground The circular jet The axially symmetric wake Boundary layer on a body of revolution b. Approximate solutions for axially symmetric boundary layers Approximate solutions for boundary layers on bodies which do not rotate Flow in the entrance of a pipe Boundary layers on rotating bodies of revolution c. Relation between axially symmetrical and two-dimensional boundary layers; Mangler's transformation d. Three-dimensional boundary layers The boundary layer on a yawed cylinder Boundary layers on other bodies 	225 225 225 230 234 235 239 239 241 242 245 247 248 254
References CHAPTER XII. Thermal boundary layers in laminar flow	$\frac{260}{265}$
 a. Derivation of the energy equation b. Temperature increase through adiabatic compression; stagnation temperature c. Theory of similarity in heat transfer d. Exact solutions for the problem of temperature distribution in a viscous flow 1. Couette flow 2. Poiseuille flow through a channel with flat walls e. Boundary-layer simplifications f. General properties of thermal boundary layers 1. Forced and natural flows 2. Adiabatic wall 3. Analogy between heat transfer and skin friction 4. Effect of Prandtl number g. Thermal boundary layers in forced flow 1. Parallel flow past a flat plate at zero incidence 2. Additional similar solutions of the equations for thermal boundary layers 3. Thermal boundary layers on isothermal bodies of arbitrary shape 4. Thermal boundary layers on rotationally symmetric and rotating bodies 6. Measurements on cylinders and other body shapes 7. Effect of free-stream turbulence h. Thermal boundary layers in natural flow 	265 268 271 277 280 282 285 285 285 285 285 285 285 286 289 292 292 292 292 292 300 303 309 311 313 313
References	321

CHAF	TE	R XIII. Laminar boundary layers in compressible flow	327
	a.	Physical considerations	327
		Relation between the velocity and the temperature fields	330
		1. Adiabatic wall	332
		2. Heat transfer (flat plate, $dp/dx = 0$)	332
		The flat plate at zero incidence	333
	d.	Boundary layer with non-zero pressure gradient	340
		1. Exact solutions	340
		1.1. The Illingworth-Stewartson transformation	340
		1.2. Self-similar solutions	344
	~	2. Approximate methods	352
		Interaction between shock wave and boundary layer ferences	$\frac{358}{372}$
	1.00		014
CHAI	PTE?	R XIV. Boundary-layer control in laminar flow	378
	a.	Methods of boundary-layer control	378
		1. Motion of the solid wall	379
		2. Acceleration of the boundary layer (blowing)	380
		3. Suction	381
		4. Injection of a different gas	382
		5. Prevention of transition by the provision of suitable shapes. Laminar aerofoils	382
		6. Cooling of the wall	382
	b.	Boundary-layer suction	383
		1. Theoretical results	383
		1.1. Fundamental equations	383
		1.2. Exact solutions	384
		1.3. Approximate solutions 2. Experimental results on suction	$\frac{392}{394}$
		2.1. Increase in lift	$394 \\ 394$
		2.2. Decrease in drag	394
	e	Injection of a different gas (Binary boundary layers)	399
	0.	1. Theoretical results	399
		1.1. The fundamental equations	399
		1.2. Exact solutions.	402
		1.3. Approximate solutions	402
		2. Experimental results	402
	Re	ferences	403
CHAI	PTF	R XV. Non-steady boundary layers	408
	a.	General remarks on the calculation of non-steady boundary layers	408
		1. Boundary-layer equations	408
		2. The method of successive approximations	410
		3. C.C. Lin's method for periodic external flows	411
		4. Expansion into a series when a steady stream is perturbed slightly	413
		5. Similar and semi-similar solutions	415
	1	6. Approximate solutions	415
	b.	Boundary-layer formation after impulsive start of motion	415
		1. Two-dimensional case	416
	0	2. Axially symmetrical problem Boundary layer formation in accelerated motion	420
	с. d.	Boundary-layer formation in accelerated motion	423
		Experimental investigation of the starting process Periodic boundary-layer flows	425
	υ.	1. Oscillating cylinder in fluid at rest	428
		2. C.C. Lin's theory of harmonic oscillations	428
		3. External flow with small, harmonic perturbation	$\frac{432}{434}$
		4. Oscillating flow through a pipe	434
	f.	Non-steady, compressible boundary layers	439

viii

Contents	ix
 Boundary layer behind a moving normal shock wave Flat plate at zero incidence with variable free-stream velocity and surface 	439
temperature srences	$\begin{array}{c} 443\\ 445\end{array}$

Part C. Transition

CHAPTER	XVI. Origin of turbulence I	449
a. S	Some experimental results on transition from laminar to turbulent flow	449
1	. Transition in pipe flow	449
	2. Transition in the boundary layer on a solid body	452
	Principles of the theory of stability of laminar flows	456
	. Introductory remarks	456
2	2. Foundation of the method of small disturbances	457
3	3. The Orr-Sommerfeld equation	459
4	4. The eigenvalue problem	460
5	5. General properties of the Orr-Sommerfeld equation	462
c. 1	Results of the theory of stability as they apply to the boundary layer on a flat	
Ţ	olate at zero incidence	465
	I. Some older investigations into stability	465
2	2. Calculation of the curve of neutral stability	466
e e	3. Results for the flat plate	468
d. (Comparison of the theory of stability with experiment	473
3	1. Older measurements of transition	473
2	2. Verification of the theory of stability by experiment	476
e. 1	Effect of oscillating free stream on transition	482
f. (Concluding remark	483
Refe	erences	484
CHAPTER	XVII. Origin of turbulence II	489
a.]	Effect of pressure gradient on transition in boundary layer along smooth walls	490
a. 1 b 1	Determination of the position of the point of instability for prescribed body shape	496
0.1	Effect of suction on transition in a boundary layer	506
d 1	Effect of body forces on transition	510
	1. Boundary layer on convex walls (centrifugal forces)	510
	2. The flow of non-homogenous fluids (stratification)	512
	Effects due to heat transfer and compressibility	514
	1. Introductory remark	514
	2. The effect of heat transfer in incompressible flow	514
	3. The effect of compressibility	516
	Stability of a boundary layer in the presence of three-dimensional disturbances	525
	1. Flow between concentric rotating cylinders	525^{-1}
	2. Boundary layers on concave walls	532
	3. Stability of three-dimensional boundary layers	535
	The influence of roughness on transition	536
	I. Introductory remark	536
2	2. Single, cylindrical roughness elements	537
	3. Distributed roughness	540
h. 2	Axially symmetrical flows	542
	erences	544

Part D. Turbulent boundary layers

CHAPTER XVIII.	Fundamentals of turbulent flow	555
a. Introducto	ry remarks	555

	 b. Mean motion and fluctuations c. Additional, "apparent" turbulent stresses d. Derivation of the stress tensor of apparent turbulent friction from the Navier- 	557 559
	 Stokes equations Some measurements on fluctuating turbulent velocities f. Engergy distribution in turbulent streams g. Wind-tunnel turbulence References 	560 564 571 572 575
CHAF	TER XIX. Theoretical assumptions for the calculation of turbulent flows	
	 a. Fundamental equations b. Prandtl's mixing-length theory c. Further assumptions for the turbulent shearing stress d. Von Kármán's similarity hypothesis e. Universal velocity-distribution laws 1. Von Kármán's velocity-distribution law 2. Prandtl's velocity-distribution law f. Further development of theoretical hypotheses References 	578 579 583 585 586 586 586 587 591 594
CHAI	TER XX. Turbulent flow through pipes	596
	 a. Experimental results for smooth pipes b. Relation between law of friction and velocity distribution c. Universal velocity-distribution laws for very large Reynolds numbers d. Universal resistance law for smooth pipes at very large Reynolds numbers e. Pipes of non-circular cross-section f. Rough pipes and equivalent sand roughness. g. Other types of roughness h. Flow in curved pipes and diffusers i. Non-steady flow through a pipe j. Drag reduction by the addition of polymers 	$596 \\ 600 \\ 602 \\ 609 \\ 612 \\ 615 \\ 623 \\ 626 \\ 629 \\ 630 \\ 631$
	TER XXI. Turbulent boundary layers at zero pressure gradient; flat plate; rotating disk; roughness	635
	 a. The smooth flat plate Resistance formula deduced from the ¹/₇-th-power velocity-distribution law Resistance formula deduced from the logarithmic velocity-distribution law Further refinements Effect of finite dimensions; boundary layers in corners Boundary layers with suction and blowing b. The rotating disk The disk in a housing The rough plate The resistance formula for a uniformly rough plate Measurements on single roughness elements Transition from a smooth to a rough surface 	$\begin{array}{c} 636\\ 637\\ 640\\ 643\\ 644\\ 645\\ 647\\ 647\\ 649\\ 652\\ 652\\ 655\\ 657\\ 657\\ 665\end{array}$
CHAF	TER XXII. The incompressible turbulent boundary layer with pressure gradient	668
	 a. Some experimental results b. The calculation of two-dimensional turbulent boundary layers 1. General remarks 2. Truckenbrodt's integral method 3. Basic equations 	

х

Contents	xi
4. Quadrature for the calculation of plane turbulent boundary layers	677
 Application of the method Remarks on the behaviour of the turbulent boundary layers in the presence 	684
of a pressure gradient	686
7. Turbulent boundary layers with suction and injection	687
8. Boundary layers on cambered walls c. Turbulent boundary layers on aerofoils; maximum lift	690 690
c. Turbulent boundary layers on aerofoils; maximum lift d. Three-dimensional boundary layers	692
1. Boundary layers on bodies of revolution	692
2. Boundary layers on rotating bodies	695
3. Convergent and divergent boundary layers	696
References	697
CHAPTER XXIII. Turbulent boundary layers in compressible flow	702
a. General remarks	702
1. Turbulent heat transfer	702
2. The fundamental equations for compressible flow	703 706
 Relation between the exchange coefficients for momentum and heat Relation between velocity and temperature distribution 	707
1. The transfer of heat from a flat plate	707
2. The transfer of heat from rough surfaces.	712
3. Temperature distribution in compressible flow	713
c. Influence of Mach number; laws of friction	715
1. The flat plate at zero incidence	716
2. Variable pressure References	723
References	724
CHAPTER XXIV. Free turbulent flows; jets and wakes	729
a. General remarks	729
b. Estimation of the increase in width and of the decrease in velocity	731
c. Examples1. The smoothing out of a velocity discontinuity	735
2. Free jet boundary	735 737
3. Two-dimensional wake behind a single body	739
4. The wake behind a row of bars	744
5. The two-dimensional jet	745
6. The circular jet	747
7. The two-dimensional wall jet d. Diffusion of temperature in free turbulent flow	750
References	752
	755
CHAPTER XXV. Determination of profile drag	758
a. General remarks	758
b. The experimental method due to Betz	759
c. The experimental method due to Jones d. Calculation of profile drag	761
e. Losses in the flow through cascades	764
1. General remarks	$\begin{array}{c} 769 \\ 769 \end{array}$
2. Influence of Reynolds number	772
3. Effect of Mach number	775
References	777
Bibliography	780
Index of Authors	797
Subject Index Abbreviations	807
	813 815
List of most commonly used symbols	