Tu tun du stian	page
Introduction	1
Part A. Fundamental laws of motion for a viscous fluid	
CHAPTER I. Outline of fluid motion with friction	4
 a. Real and perfect fluids b. Viscosity c. Compressibility d. The Hagen-Poiseuille equations of flow through a pipe e. Principle of similarity; the Reynolds and Mach numbers f. Comparison between the theory of perfect fluids and experiment 	$ \begin{array}{r} 4 \\ 5 \\ 8 \\ 10 \\ 11 \\ 18 \\ \end{array} $
CHAPTER II. Outline of boundary layer theory	23
a. The boundary layer concept	23 27 35
CHAPTER III. Derivation of the equations of motion of a compressible viscous fluid	40
 (Navier-Stokes equations) a. Fundamental equations of motion and continuity applied to fluid flow b. General stress system in a deformable body c. General strain system d. Relation between stress system and strain system for solid bodies (Hooke's law) e. Relation between stress and strain system for liquids and gases (Stokes' law of friction) f. The Navier-Stokes equations 	$ \begin{array}{r} 42\\ 42\\ 43\\ 46\\ 47\\ 50\\ 51\\ \end{array} $
CHAPTER IV. General properties of the Navier-Stokes equations	55
a. Derivation of Reynolds' principle of similarity from the Navier-Stokes equations b. Frictionless flows as "solutions" of the Navier-Stokes equations	$55 \\ 57 \\ 58 \\ 60 \\ 61 \\ 63$
CHAPTER V. Exact solutions of the Navier-Stokes equations	66
 a. Parallel flow	$\begin{array}{c} 66\\ 66\\ 68\\ 70\\ 72\\ 73\\ 74\\ 75 \end{array}$
 b. Other exact solutions 8. Stagnation in plane flow (Hiemenz Flow) 9. Stagnation in three-dimensional flow 10. Flow near a rotating disk 11. Flow in convergent and divergent channels 	78 78 81 83 89

CHAPTER VI. Very slow motion	page 94
a. The differential equations for the case of very slow motion	$94 \\ 95 \\ 98 \\ 104$
Part B. Laminar boundary layers	
CHAPTER VII. Boundary layer equations for two-dimensional flow; boundary layer on a plate	107
 a. Derivation of boundary layer equations for flow along a flat plate b. Boundary layer equations for curved walls	$107 \\ 111 \\ 112 \\ 114 \\ 115 \\ 116 \\ 126$
CHAPTER VIII. General properties of the boundary layer equations	128 128 130 135 136 137
CHAPTER IX. Exact solutions of the steady-state boundary layer equations in two- dimensional motion	$142 \\ 143 \\ 144$

dimensional motion	142
a. Flow past a wedge	143
b. Flow in a convergent channel.	144
b. Flow in a convergent channel	146
d. Boundary layer for the potential flow given by $U(x) = U_0 - a x^n$.	156
e. A new series due to H. Goertler	158
f. Flow in the wake of flat plate at zero incidence	160
g. The two-dimensional jet	164
h. Flow in the inlet length of a straight channel and a circular pipe	168
i. Continuation problem; step-by-step method.	171
. continuation problem, step-by-step method.	111
CHAPTER X. Axially symmetrical and three-dimensional boundary layers	176
a. Axially symmetrical boundary layers on bodies at rest	176
1. Rotation near the ground	176
2. The circular jet	181
3. Boundary layer on a body of revolution	185
4. Relation between axially symmetrical and two-dimensional boundary layers	190
b. Three-dimensional boundary layers: the boundary layer on a yawed cylinder	191
c. Boundary layers on rotating bodies	201
c. Doundary layers on rotating bodies	201
CHAPTER XI. Non-steady boundary layers	207
a. General remarks on the calculation of non-steady boundary layers	207
b. Boundary layer formation after impulsive start of motion	212
1. Two-dimensional case	212
2. Axially symmetrical problem	216
	219
c. Boundary layer formation with constant acceleration	$\frac{219}{221}$
d. Experimental investigation of the starting process	$\frac{221}{224}$
e. Periodic boundary layer flows	
1. Oscillating cylinder in fluid at rest	224
2. Oscillating flow through a pipe	229
	232
4. Progressing wave	
The regressing wave a set of the	234

XII

CHAPTER XII. Approximate methods for the solution of the boundary layer equations 238
a. Application of the momentum equation to the flow past a flat plate at zero incidence 238 b. The approximate method due to Th. von Kármán and K. Pohlhausen for two-dimensional flows 248 c. Comparison between the approximate and exact solutions 251 1. Flat plate at zero incidence 251 2. Two-dimensional stagnation flow 251 3. Flow past a circular cylinder 252 d. Further examples 252 e. Application of the approximate method to bodies of revolution and three-dimensional boundary layers 256 f. Other approximate methods 255 g. Laminar flow against pressure gradient; separation 260
CHAPTER XIII. Boundary layer control
a. Methods of boundary layer control 266 1. Motion of the solid wall 267 2. Acceleration of the boundary layer 268 3. Suction 266 4. Prevention of transition by the provision of suitable shapes. Laminar aerofoils 266 b. Boundary layer suction 270 1. Theoretical results 277 1.1. Fundamental equations 277 1.2. Exact solutions 277 2. Experimental results on suction 277 2. Experimental results on suction 276 2.1. Increase in lift 276 2.2. Decrease in drag 286
CHAPTER XIV. Thermal boundary layers in laminar flow
a. Derivation of the energy equation
CHAPTER XV. Boundary layers in compressible flow
a. Introductory remarks 336 b. Relation between the velocity and the temperature fields 341 c. The flat plate at zero incidence 344 d. Boundary layer with non-zero pressure gradient 346 1. Exact solutions 356 2. Approximate methods 356 e. Interaction between shock wave and boundary layer 364

XIII

Part C. Transition	page
CHAPTER XVI. The origin of turbulence I	375
 a. Some experimental results on transition from laminar to turbulent flow	375 375 378 382 382 383 385 386 388 391 391 392 396 399 399 401
CHAPTER XVII. Origin of turbulence II	409
 a. Effect of pressure gradients on transition in boundary layer along flat walls b. Determination of the position of the point of instability for prescribed body shape c. Effect of suction on transition in a boundary layer	$\begin{array}{r} 409\\ 414\\ 423\\ 428\\ 428\\ 431\\ 433\\ 433\\ 433\\ 435\\ 439\\ 439\\ 440\\ 445\\ 445\end{array}$
1. Introductory remark 2. Single cylindrical roughness elements 3. Distributed roughness h. Axially-symmetrical flows	$ 445 \\ 446 \\ 449 \\ 450 $

Part D. Turbulent boundary layers

Tare Dr. Tarbuicht boundary rayers	
CHAPTER XVIII. Fundamentals of turbulent flow	457
a. Mean motion and fluctuations . b. Additional, "apparent" turbulent stresses . c. Derivation of the stress tensor of apparent turbulent friction from the Navier-	$\begin{array}{c} 458\\ 460 \end{array}$
Stokes equations	465
CHAPTER XIX. Theoretical assumptions for the calculation of turbulent flows	
a. Fundamental equations . b. Prandtl's mixing length theory	$475 \\ 477$
c. Two further assumptions for the turbulent shearing stress	$\frac{480}{482}$
e. Von Kármán's similarity hypothesis	485

XIV

	page
f. Universal velocity distribution law	487
1. Von Kármán's velocity distribution law	487
2. Velocity distribution from Prandtl's theory	$\frac{488}{492}$
g. Heat transfer in turbulent flow	$\frac{492}{500}$
$\check{\mathbf{h}}$. Further development of theoretical hypotheses	900
CHAPTER XX. Turbulent flow through pipes	502
a. Experimental results for smooth pipes	502
b. Relation between law of friction and velocity distribution	506
c. Universal velocity distribution laws for very large Reynolds numbers	508
d. Universal resistance law for smooth pipes at very large Reynolds numbers .	514
e. Pipes of non-circular cross-section	517
f. Rough pipes and equivalent sand roughness	519
g. Other types of roughness	527
h. Flow in curved pipes	$529 \\ 531$
1. Non-steady now through a pipe	991
CHAPTER XXI. Skin friction drag of a flat plate at zero incidence; Rotating disks;	
Roughness	534
- The encoded data data	535
a. The smooth flat plate $1/7$ -th-power velocity distribution law	536
2. Resistance formula deduced from the logarithmic velocity distribution law	539
3. Further refinements	$555 \\ 541$
4. Influence of Mach number	543
b. The rotating disk	547
1. The "free" disk	547
2. The disk in a housing \ldots	548
a The rough plots	551
c. The rough plate	551
2. Measurements on single roughness elements	553
3. Transition from a smooth to a rough surface	557
d. Admissible roughness	557
CHAPTER XXII. The turbulent boundary layer with positive and negative pressure	
gradient	566
	566
a. Some experimental results	$500 \\ 567$
	$567 \\ 567$
1. General remarks	569
3. Calculation of the momentum thickness	$505 \\ 571$
4. Calculation of the shape factor	576
5. Procedure and numerical example	579
6. Turbulent boundary layers with suction	583
7. Boundary layers on cambered walls	584
c. Three-dimensional boundary layers	584
1. Boundary layers on bodies of revolution.	584
2. Boundary layers on rotating bodies	585
3. Convergent and divergent boundary layers	585
CHAPTER XXIII. Free turbulent flows; jets and wakes	590
a. General remarks	590
b. Estimation of the increase in width and of the decrease in velocity	592
	592
c. Examples	596
2. Free jet boundary	598
2. Free jet boundary	600
a and annonononal name sound a studio sous	

 4. The wake behind a row of bars 5. The two-dimensional jet 6. The circular jet 7. A state of the circular is the circular of the circular is the circular	page 604 605 607 609 611
CHAPTER XXIV. Determination of profile drag	615
b. The experimental method due to Betz	$615 \\ 616 \\ 618 \\ 620 \\ 625$
Bibliography	633
Index of Authors	637
Subject Index	643

Tables

Table	1.1:	Viscosity conversion factors	6
Table	1.2:	Density, viscosity, and kinematic viscosity of water and air in terms of temperature	8
Table	1.3:	Kinematic viscosity	7
Table	2.1:	Thickness of boundary layer, δ , at trailing edge of flat plate at zero incidence in parallel turbulent flow	39
Table	5.1:	Functions occuring in the solution of plane and axially symmetrical flow with stagnation point. Plane case from L. Howarth and H. Goertler; axially symmetrical case from N. Froessling	82
Table	5.2:	The functions for the velocity and pressure distribution in the neighbourhood of a disk rotating in a fluid at rest; calculated by W. G. Cochran	87
Table	7.1:	The function $f(\eta)$ for the boundary layer along a flat plate at zero incidence after L. Howarth $\ldots \ldots \ldots$	121
Table	9.1:	Functional coefficients for the first six terms of the Blasius series required in the calculation of two-dimensional boundary layers on a cylinder (symmetrical case) after A. N. Tifford	150
Table	10.1:	The functions for the velocity distribution for the case of rotation over a stationary wall after A. C. Browning	180
Table	10.2:	The functional coefficients of the Blasius series for the calculation of the boundary layer on a body of revolution after Froessling	189
Table	10.3:	The functions $g_0(\eta)$ and $g_2(\eta)$ which occur in problems with stagnation line after Goertler	196
Table	11.1:	The functions $\zeta_{1a}{}'$ and $\zeta_{1b}{}'$ for non-steady impulsive motion after Boltze	217
Table	12.1:	Results of the calculation of the boundary layer for a flat plate at zero incidence based on approximate theory	242

XVI