Contents

Chapter I. Forced Vibrations in Systems Having One Degree or Two Degrees of Freedom

Elastic Suspension with a Single Degree of Freedom	1
Torsional Oscillations	2
Natural Oscillations	3
Forced Vibrations	3
Vibration Transmission Factor	5
Elastic Suspension with Two Degrees of Freedom. Vibration Absorber	6
Response Curve of an Elastic System with Two Degrees of Freedom.	7
Vehicle Suspension	11
Whirling Motion of a Rotor-Stator System with Clearance Bearings .	16
Effect of Friction on the Whirling Motion of a Shaft in Rotation;	
Synchronous Precession, Self-sustained Precession	20
Synchronous Motion	24
Self-maintained Precession	24
Chapter II. Vibrations in Lattices	
A Simple Mechanical Model	26
The Alternating Lattice Model	28
Vibrations in a One-Dimensional Lattice with Interactive Forces Derived	
from a Potential	30
Vibrations in a System of Coupled Pendulums	34
Vibrations in Three-Dimensional Lattices	35
Non-Linear Problems	36
Chapter III. Gyroscopic Coupling and Its Applications	
1. The Gyroscopic Pendulum	42
Discussion of the Linearised System	45
Appraisal of the Linearisation Process in the Case of Strong Coupling	46
Gyroscopic Stabilisation	46
2. Lagrange's Equations and Their Application to Gyroscopic Systems	49
Example: The Gyroscopic Pendulum	53
3. Applications	53

	The Gyrocompass				
	Influence of Relative Motion on the Behaviour of the Gyr				
	Gyroscopic Stabilisation of the Monorail Car		-		
4	Routh's Stability Criterion				
5	The Tuned Gyroscope as Part of an Inertial System for M	Ieas	uri	ng	•
٥.	the Rate of Turn				
	Kinematics of the Multigimbal Suspension	•	•	•	•
	a) Orientation of the Rotor				
	b) Co-ordinates of an Intermediate Gimbal	•	•	•	•
	c) Relations Between the Parameters θ and ψ				
	The Equations of Motion $\dots \dots \dots \dots$				
	Inclusion of Damping Terms in the Equations of Motion				
	Dynamic Stability. Undamped System				
	Frequencies of Vibrations of the Free Rotor				
	Motion of the Free Rotor	•	٠	•	•
	Case of a Multigimbal System Without Damping.				
	The Tune Condition	•	•	•	•
	Examination of the Two-Gimbal System	•	•	•	•
Chai	pter IV. Stability of Systems Governed by the Linear Appro	xin	nati	ion	
D	iscussion of the Equation $Aq'' + \xi \Gamma q' = 0$	•	•	•	•
	iscussion of the Equation $Aq'' + \xi \Gamma q' + Kq = 0$				
Sy	stems Comprising Both Gyroscopic Forces and Dissipative				
	1. Case $E = 0$	•	•	٠	•
	A Modified Approach in the Case of Instability				
	2. Case $E \neq 0$				
Ei	igenmodes				
	ayleigh's Method				
Ef	ffect on the Eigenvalues of Changes in Structure				
	An Example				
Cha	pter V. The Stability of Operation of Non-Conservative Mo	echa	ınic	al	
	tems				
1	D 11' 14 4' 1 D '0 F0' 4				
	Rolling Motion and Drift Effect				
	Yawing of Road Trailers				
3.	Lifting by Air-Cushion				•
	The Stationary Regime	•	•		•
	Case of an Isentropic Expansion	•			
	Dynamic Stability				
Cha	pter VI. Vibrations of Elastic Solids				
	•				
1.	Flexible Vibrations of Beams				•
	1. Equations of Beam Theory				
	2. A Simple Example				

	The Energy Equation	110
	The Modified Equations of Beam Theory; Timoshenko's Model.	11
	Timoshenko's Discretised Model of the Beam	120
		12
,	Rayleigh's Method	
	6.1. Some Elementary Properties of the Spaces $H^1(0, l)$, $H^2(0, l)$.	12
	6.2. Existence of the Lowest Eigenfrequency	12
	6.3. Case of a Beam Supporting Additional Concentrated Loads	13
	6.4. Intermediate Conditions Imposed on the Beam	13
	6.5. Investigation of Higher Frequencies	13
	Examples of Applications	13
	7.1. Beam Fixed at $x = 0$, Free at $x = l$	13
	7.2. Beam Fixed at Both Ends	13
	7.3. Beam Free at Both Ends	13
	7.4. Beam Hinged at $x = 0$, Free at $x = 1$	13
	7.5. Beam Fixed at $x = 0$ and Bearing a Point Load at the	
	Other End	13
	7.6. Beam Supported at Three Points	13
	7.7. Vibration of a Wedge Clamped at $x = 0$. Ritz's Method	13
	7.8. Vibrations of a Supported Pipeline	13
		13
	of a Beam and Application to Blade Vibrations in	
	Turbomachinery	14
	7.10. Vibrations of Interactive Systems	14
	Forced Vibrations of Beams Under Flexure	14
	The Comparison Method	14
	9.1. The Functional Operator Associated with the Model of a	
	Beam Under Flexure	14
	9.2. The Min-Max Principle	15
	9.3. Application to Comparison Theorems	15
1	Forced Excitation of a Beam	15
	10.1. Fourier's Method	15
	10.2. Boundary Conditions with Elasticity Terms	15
	10.3. Forced Vibrations of a Beam Clamped at One End, Bearing a	13
	Point Load at the Other End, and Excited at the Clamped End	
		1.5
TT T	by an Imposed Transverse Motion of Frequency ω	15
11. L	ngitudinal Vibrations of Bars. Torsional Vibrations	16
	Equations of the Problem and the Calculation of Eigenvalues	16
2	The Associated Functional Operator	16
3	The Method of Moments	16
	3.1. Introduction	16
	3.2. Lanczos's Orthogonalisation Method	16
	3.3. Eigenvalues of A_n	16
	3.4. Padé's Method	16
	3.5. Approximation of the A Operator	17
III. V	prations of Elastic Solids	17
	Statement of Problem and General Assumptions	17
	statement of 1 toolein and General Assumptions	1/

Contents

IX

	2.	The Energy Theorem	176
	3.	Free Vibrations of Elastic Solids	177
		3.1. Existence of the Lowest Eigenfrequency	177
		3.2. Higher Eigenfrequencies	181
		3.3. Case Where There Are No Kinematic Conditions	182
		3.4. Properties of Eigenmodes and Eigenfrequencies	182
	4.	Forced Vibrations of Elastic Solids	186
	•	4.1. Excitation by Periodic Forces Acting on Part of the Boundary	186
		4.2. Excitation by Periodic Displacements Imposed on Some Part	
		of the Boundary	191
		4.3. Excitation by Periodic Volume Forces	193
	5.	·	196
IV		porations of Plane Elastic Plates	197
	1.	Description of Stresses; Equations of Motion	197
	2.	Potential Energy of a Plate	200
	3.	Determination of the Law of Behaviour	201
	4.	Eigenfrequencies and Eigenmodes	203
	5.	Forced Vibrations	209
	6.	Eigenfrequencies and Eigenmodes of Vibration of Complex Systems	211
	٠.	6.1. Free Vibrations of a Plate Supported Elastically over a Part U	
		of Its Area, U Open and $\overline{U} \subset \Omega$	211
		6.2. Eigenfrequencies and Eigenmodes of a Rectangular Plate	
		Reinforced by Regularly Spaced Stiffeners	211
v	Vil	prations in Periodic Media	212
٠.	1.		
		Inequality	212
	2.	Bloch Waves	214
			~.
Cha	pte	r VII. Modal Analysis and Vibrations of Structures	
ľ.	Vil	brations of Structures	217
		ee Vibrations	217
		orced Vibrations	218
		andom Excitation of Structures	220
11.		brations in Suspension Bridges	224
11.		ne Equilibrium Configuration	224
		the Flexure Equation Assuming Small Disturbances	225
		ee Flexural Vibrations in the Absence of Stiffness	227
	-	a) Symmetric Modes: $\eta(x) = \eta(-x)$	228
		b) Skew-Symmetric Modes: $\eta(x) = -\eta(-x)$	228
		orsional Vibrations of a Suspension Bridge	230
		mmetric Modes	232
	Jy.	a) Flexure	232
		b) Torsion	232
	1 /:	brations Induced by Wind.	234
		erodynamic Forces Exerted on the Deck of the Bridge	234
	AC	TOUVILATING FUICES EXCITED OIL THE DECK OF THE DITURE	430

Contents	ΧI
Discussion Based on a Simplified Model	239 241
Chapter VIII. Synchronisation Theory	
1. Non-Linear Interactions in Vibrating Systems	245
2. Non-Linear Oscillations of a System with One Degree of Freedom	250
2.1. Reduction to Standard Form	250
2.2. The Associated Functions	251
2.3. Choice of the Numbers m and N	252
2.4. Case of an Autonomous System	252
3. Synchronisation of a Non-Linear Oscillator Sustained by a Periodic	253
Couple. Response Curve. Stability	256
4. Oscillations Sustained by Friction	258
5. Parametric Excitation of a Non-Linear System6. Subharmonic Synchronisation	261
7. Non-Linear Excitation of Vibrating Systems. Some Model Equations	265
8 On a Class of Strongly Non-Linear Systems	266
8.1. Periodic Regimes and Stability.	266
8.2. Van der Pol's Equation with Amplitude Delay Effect	269
9. Non-Linear Coupling Between the Excitation Forces and the Elastic	
Reactions of the Structure on Which They Are Exerted	272
Application to Bouasse and Sarda's Regulator	276
10. Stability of Rotation of a Machine Mounted on an Elastic Base and	
Driven by a Motor with a Steep Characteristic Curve	278
11. Periodic Differential Equations with Singular Perturbation	281
11.1. Study of a Linear System with Singular Perturbation	
$\mu(\mathrm{d}x/\mathrm{d}t) = A(t)x + h(t) $	281
11.2. The Non-Linear System	283
11.3. Stability of the Periodic Solution	285
12. Application to the Study of the Stability of a Rotating Machine	
Mounted on an Elastic Suspension and Driven by a Motor with a	207
Steep Characteristic Curve	287 290
13. Analysis of Stability	290
14. Rotation of an Unbalanced Shaft Sustained by Alternating Vertical	297
Displacements	301
16. Synchronisation of the Rotation of an Unbalanced Shaft Sustained	501
by Alternating Vertical Forces	304
16.1. The Non-Resonant Case	304
16.2. Analysis of Stability	307
17. Synchronisation of the Rotation of an Unbalanced Shaft Sustained by	/
Alternating Forces in the Case of Resonance	311
17.1. The Modified Standard System	312
17.2. Synchronisation of Non-Linear System	314

	17.3. Stability Criterion for Periodic Solution	
	ter IX. Stability of a Column Under Compression – ieu's Equation	
Bu	ckling of a Column	5
	alysis of Stability	7
	Discretised Model of the Loaded Column)
	e Discretised Model with Slave Load	
	escription of the Asymptotic Nature of the Zones of Instability for the	•
	Mathieu Equation	3
No	ormal Form of Infinite Determinant. Analysis of Convergence 337	
	ll's Equation	
111	is Equation	,
to Co	ter X. The Method of Amplitude Variation and Its Application oupled Oscillators	_
	sing the Problem	
Ca	ses Where Certain Oscillations Have the Same Frequency 353	3
Co	oupled Oscillators; Non-Autonomous System and Resonance.	
	A Modified Approach	1
Ca	se of Resonance	3
Ca	se Where Certain Eigenmodes Decay (Degeneracy)	3
Ca	se of Oscillators Coupled Through Linear Terms)
No	on-Autonomous Non-Linear System in the General Case; Examination	
	of the Case When Certain Eigenmodes Are Evanescent 362	<u>)</u>
	roscopic Stabiliser with Non-Linear Servomechanism	3
-	oter XI. Rotating Machinery	
τ,	The Simplified Model with Frictionless Bearings	3
	Preliminary Study of the Static Bending of a Shaft with Circular Cross-	•
	Section	3
	Steady Motion of a Disc Rotating on a Flexible Shaft	
	Flexural Vibrations When Shaft Is in Rotation	
	Forced Vibrations	
	Effects of Flexibility of the Bearings	
	Hydrodynamics of Thin Films and Reynold's Equation 380	
	Application to Circular Bearings	
	Unsteady Regime	
(Gas Lubricated Bearings	
	Effects of Bearing Flexibility on the Stability of Rotation of a Disc . 388	
	1. Case of an Isotropic Shaft: $b_2 = \tilde{b}_2$, $c_2 = \tilde{c}_2$	
	2. Case Where Shaft and Bearings Are Both Anisotropic 393	3

	Conte	nts XII
Periodic Linear Differential Equation with Reciprocity Proper		
Stability of Rotation of Disc Where the System Has Aniso Flexibilities		
An Alternative Approach to the Stability Problem		
Application to the Problem of the Stability of a Rotating Shafe		
III. Stability of Motion of a Rigid Rotor on Flexible Bearings. Gyro		
Effects and Stability		
Notation and Equations of Motion		
Analysis of Stability in the Isotropic Case		. 41
Calculating the Critical Speeds of the Rotor		
Resonant Instability Near $\omega = (\omega_1 + \omega_2)/2$		
Instability Near the Resonance $\omega = \omega_1$		
Ground Resonance of the Helicopter Blade Rotor System .		
IV. Whirling Motion of a Shaft in Rotation with Non-Linear I		
Physical Behaviour		
Calculation of T_y, T_z		
The Equations of Motion		
Effect of Hysteresis on Whirling		
Stability of the Regime $\omega < \omega_0$. 43
Analysis of the Rotatory Regime When $\omega > \omega_0$ V. Suspension of Rotating Machinery in Magnetic Bearings		
Principle of Magnetic Suspension		
Quadratic Functionals and Optimal Control		. 44
Application to the Model with One Degree of Freedom		
Characteristics and Applications of Magnetic Bearings		
FF		
Chapter XII. Non-Linear Waves and Solitons		
1. Waves in Dispersive or Dissipative Media		. 44
The Non-Linear Perturbation Equations		
An Example: Gravity Waves in Shallow Water		. 45
2. The Inverse Scattering Method		
The Method of Solution		
3. The Direct Problem		
3.1. The Eigenvalue Problem		
On Some Estimates		
The Finiteness of the Set of Eigenvalues		. 46
3.2. Transmission and Reflection Coefficients		. 46
Eigenvalues (Continued)		. 46
4. The Inverse Problem		. 46
The Kernel $K(x, y)$ (Continued)		. 47
The Gelfand-Levitan Integral Equation		. 47
An Alternative Definition of the Kernel $K(x, y)$. 47
Solving Gelfand-Levitan's Equation		. 47
5. The Inverse Scattering Method		. 48
The Evolution Equation		. 48

	~
XIV	Contents

	n of the Ir							
7. The K	orteweg-de	Vries E	quation.	Interact	ion of S	olitary	Wave	es .
Investi	gation of A	symptot	ic Beha	viour for	$t \rightarrow + c$	ο.		
Asymp	totic Behav	iour for	$t \rightarrow -c$	ο				