CHAPTER I.

ON MOMENTS OF INERTIA.

ARTS.		PAGES
1-2.	On finding Moments of Inertia by integration	1
3- 9.	Definitions, elementary propositions and reference table .	2-8
10 - 11.	Method of Differentiation	89
12-14.	Theorem of Parallel Axes	9-12
15 - 17.	Theorem of the Six Constants of a Body	12 - 14
18.	Method of Transformation of Axes	14 - 15
19-32.	Ellipsoids of Inertia, Invariants, &c	15 - 22
33—39.	Equimomental Bodies, Triangle, Tetrahedron, &c. See	
	Note, page 423	22 - 26
40-44.	Theory of Projections. See Note, pages 423-4.	26-29
45.	Moments with higher powers. See Note, page 425	29 - 30
46.	Theory of Inversion	30-31
47.	Centre of Pressure, &c	31 - 33
48-51.	Principal Axes	3335
52 - 55.	Foci of Inertia	35 - 38
56-59.	Arrangement of Principal Axes	38 - 40
6061.	Condition that a Line should be a Principal Axis	4041
62 - 65.	Locus of Equal Moments, Equimomental Surface, &c.	4144

CHAPTER II.

D'ALEMBERT'S PRINCIPLE, &C.

66—78. 79—82. 83	D'Alember Independe General m	t's Pr nce of ethod	incip f Tra	ole an Inslat	id the	e Equ nd R	ation otatio	s of l on.	Motio	8.	•	$\begin{array}{r} 45-55\\ 55-58\\ 58 59\end{array}$
8487.	Impulsive Examples	Force	s.	•	• •	•	•		•		•	59-62 62-63

CHAPTER III.

MOTION ABOUT A FIXED AXIS.

ARTS.			PAGES
88-91.	The Fundamental Theorem		64-66
92—93.	The Pendulum and the Centre of Oscillation	•	66-69
94—96.	Change of temperature and of the buoyancy of the air	•	69 - 72
97.	Moments of Inertia found by experiment	•	7273
98—105.	Length of the Seconds Pendulum with correction	for	
	resistance of the air	•	73 - 77
106-107.	Construction of a Pendulum		78-79
108.	The Pendulum as a Standard of Length	•	79 - 80
109-109 b.	Oscillation of a watch balance	•	80 - 82
110113.	Pressures on the fixed Axis. Bodies symmetrical and	l not	
	symmetrical. Impulses	•	82 - 86
114.	Analysis of results. Examples		86—89
115-116.	Dynamical and Geometrical Similarity		89—90
117-119.	Permanent Axes of Rotation, Initial Axes		90 - 92
120.	The Centre of Percussion		92 - 93
121-125.	The Ballistic Pendulum		93—97
126-129.	The Anemometer		97—99

CHAPTER IV.

MOTION IN TWO DIMENSIONS.

130133.	General methods of forming the Equations of Motion .	100 - 103
134.	Angular Momentum	103 - 104
135-138.	Method of Solution by Differentiation	104 - 108
139—143.	Vis Viva, Force Function and Work	108 - 113
144-148.	Examples of Solution	113 - 121
149.	Characteristics of a Body	121 - 122
150-152.	Stress at any point of a Rod	122 - 126
153 - 157.	Laws of Friction	126 - 129
158-160.	Discontinuity of Friction, and Indeterminate Motion .	129 - 130
161—163.	A Sphere on an imperfectly rough plane	130 - 132
164.	Friction Couples	132 - 133
165 - 166.	Friction of a carriage and other examples	133—136
167.	Rigidity of cords	136
1 68— 1 69.	Impulsive Forces, General Principles	136 - 137
170-175.	Examples of sudden changes of motion, reel, sphere, disc,	
	column, &c. Work of an impulse. Earthquakes .	137 - 145
176—178.	Impact of Compound Inelastic Bodies, &c	145 - 148
179—180.	Impact of Smooth Elastic Bodies. See Art. 404	148 - 150
181—198.	The general problem of the Impact of two Bodies, smooth	
	or rough, elastic or inelastic. The representative point.	150 - 164
199-202.	Initial Motions. Also Examples	164 - 170
203-213.	Relative Motion and Moving Axes	170-178
	Examples	178-183

CHAPTER V.

MOTION IN THREE DIMENSIONS.

ARTS.				PAGES
214 - 228.	Translation and Rotation. Base Point, Central Axis			184
229 - 234.	Composition of Rotations, &c	•	•	190 - 193
235 - 237.	Analogy to Statics		•	193 - 195
238-239.	The Velocity of any Point		•	195 - 197
240 - 247.	Composition of Screws, &c	•	•	197 - 204
248259.	Moving Axes and Euler's Equations			204 - 210
260.	The Centrifugal Forces of a Body			210 - 212
261-267.	Angular Momentum with Fixed or Moving Axes	•		212 - 218
268 - 270.	Examples of Top and Sphere. See Vol. II.			218 - 222
271-281.	Finite Rotations. Theorems of Rodrigues and Sylv	restei	r.	
	Screws, &c			222 - 229

CHAPTER VI.

ON MOMENTUM.

282 - 283.	Fundamental Theorem .		•	•	•	•		230 - 232
284286 b.	Attracting particles. Lagra	nge.	Lapla	ce.	Jacob	oi 🛛	•	232 - 237
287.	Living Things			•		•		237 - 239
288-298.	Sudden fixtures and changes				•			239 - 245
299.	Gradual changes				•	•	•	245 - 246
300.	Motion of a string, &c. See V	/ol. I	I					246-248
301-305.	The Invariable Plane		•				•	248 - 254
306-314.	Impulsive forces in three dime	ensio	ns.		•	•	•	254 - 259
315-331.	The general problem of the In	npact	t of tw	юΒ	odies i	in th	ree	
	dimensions, the bodies bein	g sm	ooth o	r roi	ıgh, el	asti	e or	
	inelastic. The representati	ve po	int	•				259 - 268
	Examples	•			•		•	269 - 271

CHAPTER VII.

VIS VIVA.

332341.	Force-function and Work		•	272 - 276
342.	Work done by Gravity and Units of Work			276 - 277
343.	Work of an Elastic String	•	•	277 - 278
344.	Work of Collecting a Body	•		278 - 281
345.	Work of a Gaseous Pressure	•	•	281 - 282
346.	Work of an Impulse	•		282 - 283
347.	Work of a Membrane		•	283
348.	Work of a couple	•	•	283 - 284
349.	Work of Bending a Rod		•	284
350 - 362.	Principle of Vis Viva, Potential and Kinetic Energy	•	•	284 - 290
363364.	Expressions for Vis Viva of a Body	•		290 - 292
365366.	Theorems and Examples on Vis Viva		•	292 - 294
367370.	Principle of Similitude. Models	•	•	294 - 297
371.	Froude's Theorem		•	297 - 298

ARTS.							PAGES
372.	Savart's Theorem		• •	• •	•		298
373.	Theory of dimensions	з		• •			298 - 299
374-374 a.	Imaginary time					•	299 - 300
375—376.	Clausius' theory of st	ationary 1	notion.	The Virial			300
377381.	Carnot's theorems						302-304
382-386.	The equation of Virt	ual Work	applied	to Impulses			304306
387-388.	Kelvin's theorem. E	Bertrand's	theorem	. Examples			306-309
389.	Imperfectly elastic an	nd rough l	bodies .				309-310
390	Gauss' principle of L	east Cons	traint .	• •			310313
	Examples	•••	• •	• •	•	•	313-316

CHAPTER VIII.

LAGRANGE'S EQUATION.

395—399.	Typical Equation for Finite Forces.	See 2	Note,	page	429		317 - 322
400.	Indeterminate Multipliers	•	•	•			322 - 323
401404.	Lagrange's equations for Impulsive Fe	orces					323-327
405.	Example on the equivalent pendulum		•				327 - 329
406.	Euler's equations, &c		•				329
407.	Vis Viva, Liouville's integrals and elli	iptic	coord	inate	s.		329 - 332
408.	Examples on impulses			•		•	332 - 333
409—413.	The Reciprocal Function	•	•	•			333336
414—416 a.	Hamilton's equations	•					336-338
417.	Reciprocal Theorems	•					338-339
418421.	The modified Lagrangian Function.	\mathbf{Its}	use	in fo	rmin	g	
	Lagrange's and Hamilton's equation	ons	•	• .	•	•	339 - 342
422 - 425.	Coordinates which appear only as velo	ocitie	es	•	•	•	342 - 344
426 - 428.	Non-conservative Forces	•			•	•	344 - 346
429—430 <i>j</i> .	Systems not holonomous. Indete	rmin	ate	coeffi	cients	3.	
	Appell's function S		•	•		•	346 - 353
431—431 h.	Change of the independent variable	t to	au	•		•	853356
	Examples	•			•	•	357-358

CHAPTER IX.

SMALL OSCILLATIONS.

432438.	Oscillations with one degree of freedom	359363
439-440.	Moments about the Instantaneous Axis. See Art. 448	363-364
441—444.	Oscillations of Cylinders, with the use of the circle of stability	364-367
445.	Oscillations of a body guided by two curves	367-368
446.	Oscillation when the path of the Centre of Gravity is known	368-369
447.	Oscillations deduced from Vis Viva	369-370
448.	Moments about the Central Axis	370-371
449-452.	Oscillations deduced from the ordinary equations of motion	371-374
453-462.	Lagrange's method	374-387
463466.	Initial motions	387-390
467-469.	The energy test of stability	390
470-476.	The Cavendish Experiment	393-399
	Examples	400-401

xiv

CHAPTER X.

ON SOME SPECIAL PROBLEMS.

ARTS.		PAGES
477.	Oscillations of a rocking body in three dimensions	402
478-479.	Relative indicatrix	402 - 403
480-482.	Cylinder of stability and the time of oscillation	403 - 405
483-487.	Oscillations of rough cones rolling on each other to the first	
	order of small quantities	405 - 408
488-490.	Large Tautochronous motions	408 - 411
491-492.	Effect of a resisting medium	411 - 412
493.	Rough cycloid, resisting medium	412 - 413
494.	Historical summary	413
495.	Motion on any rough curve in a resisting medium $\kappa' v^2$,	
	with any forces	413-415
496.	Euler's theorem	415
497.	Time of motion	415
498-499.	With central force λr , resistance $2\kappa v$, the rough tautochrone	
	is $\rho = ip$. Discussion	415-417
500-507.	Conditions of stability and times of oscillations of rough	
	cylinders to any order of small quantities	417-420
508-510.	Conditions of stability and times of oscillation of rough	120
000 010	cones to any order	420-422

NOTES.

Art.	39.	Moment of inertia of a tetrahedron in space	e of n	dime	nsion	s	423
Art.	44.	The four equimomental points of a body	•				423 - 424
Art.	45.	Moments with higher powers				•	425 - 426
Art.	286.	Steady motion of four attracting particles	•	•	•		426 - 429
Art.	399.	The proof of Lagrange's Equations .					429-430
Art.	410,	462. Historical Notes		•	•		430

_