Contents

Part I Free Flows

Introductory Remarks. By J. H. Whitelaw	3
Intermittency in Free Turbulent Shear Flows. By C. Dopazo and E. E. O'Brien	6
Some Measurements of Spatial Correlations in an Axisymmetric Turbulent Jet. By X. B. Reed, Jr., L. Spiegel, and S. Hartland	24
Near Field Velocity Measurements in a Fully Pulsed Subsonic Air Jet. By K. Bremhorst and W. H. Harch	37
Turbulent Temperature and Thermal Flux Characteristics in the Wake of a Cylinder.By G. Fabris	55
The Calculation of Three-Dimensional Turbulent Free Jets. By J. J. McGuirk and W. Rodi	71

Part II Wall Flows

Introductory Remarks. By F. Durst	87
Experimental Investigation of the Structure of Near-Wall Turbulence and Viscous Sub- layer. By S. S. Kutateladze, E. M. Khabakhpasheva, V. V. Orlov, B. V. Perepelitsa, and E. S. Mikhailova	91
Thermal Characteristics of a Turbulent Boundary Layer with an Inversion of Wall Heat Flux. By G. Charnay, J. P. Schon, E. Alcaraz, and J. Mathieu	104
Measurements of Developing Turbulent Flow in a Square Duct. By F. B. Gessner, J. K. Po, and A. F. Emery	119
Measurements in the Thick Axisymmetric Turbulent Boundary Layer and the Near Wake of a Low-Drag Body of Revolution. By V. C. Patel, Y. T. Lee, and O. Güven.	137
Structure and Development of a Turbulent Boundary Layer in an Oscillatory External Flow. By J. Cousteix, A. Desopper, and R. Houdeville	154

Part III Recirculating Flows

Introductory Remarks. By F. W. Schmidt	•	•	•	·	175
Perturbations of Turbulent Pipe Flow. By H. Ha Minh and P. Chassaing	•	•	•		178
Measurements of Mean Velocity and Reynolds Stresses in Some Regions of Recirculating Flow, By W. D. Moss, S. Baker, and L. J. S. Bradbury.					198

Theoretical and Experimental Investigations of Turbulent Flows with Separation.	
By F. Durst and A. K. Rastogi	208
Numerical Difficulties in the Calculation of Complex Turbulent Flows. By I. P. Castro	220
The Calculation of Two-Dimensional Turbulent Recirculating Flows. By A. D. Gosman,	
E. E. Khalil, and J. H. Whitelaw	237

Part IV Developments in Reynolds Stress Closures

Stress Transport Closures – Into the Third Generation. By B. E. Launder		259
A Family of Turbulence Models for Three-Dimensional Boundary Layers. By J. C. Rotta		267
Numerical Prediction of Axisymmetric Free Shear Flows with a Reynolds Stress Closure. By B. E. Launder and A. Morse		279
Buoyancy Effects in Entraining Turbulent Boundary Layers: a Second-Order Closure Study. By O. Zeman and J. L. Lumley		295
The Clipping Approximation and Inhomogeneous Turbulence Simulations. By J. C. André, G. De Moor, P. Lacarrère, G. Therry, and R. du Vachat		307
The Temperature Skewness Budget in the Lower Atmosphere and Its Implications for Turbulence Modeling. By J. C. Wyngaard and A. Sundararajan		319
Theoretical Study of the Reynolds Stress Equations. By A. Lin and M. Wolfshtein .	•	327

Part V New Directions in Modeling

Subgrid Scale Modeling – An Introduction and Overview. By J. R. Herring 347
Studies of Subgrid Modelling with Classical Closures and Burgers Equation.By M. D. Love and D. C. Leslie
Direct Numerical Simulation of Turbulent Velocity, Pressure, and Temperature Fields in Channel Flows. By G. Grötzbach and U. Schumann
Improved Methods for Large Eddy Simulations of Turbulence. By N. N. Mansour, P. Moin, W. C. Reynolds, and J. H. Ferziger
Numerical Simulation of Turbulent Mixing Layers via Vortex Dynamics. By W. T. Ashurst
Index of Contributors