CONTENTS

PART I. INTRODUCTORY LECT	TURES 1	
Relaxation Under Topological Constraints		
H.K. Moffatt		
1. Gravitational Relaxation	3	
2. Magnetic Relaxation	7	
3. Analogous Euler Flows	16	
4. Knots and Links	23	
5. Relaxation Using Artificial	Dynamics 25	
References	27	
KNOT THEORY, JONES' POLYNOMIALS	5, INVARIANTS OF	
3-MANIFOLDS, AND THE TOPOLOGICA	L THEORY OF FLUID	
DYNAMICS	29	
Kenneth C. Millett		
1. Knots and Links in 3-Space	29	
2. The Bracket Polynomial	49	
3. The 3-Manifold Invariants	56	
References	60	
TOPOLOGY OF KNOTS	65	
Martin Scharlemann		
1. Knotting and Unknotting	65	
2. Seifert Surfaces and Knot G	Jenus 67	
3. Winding, Wrapping, and Sa	atellites 69	
4. Band Sums and Connected	Sums of Knots 71	
5. Bridge Number and Curvat	ure 75	
6. Connections with Knot Ene	ergy 79	
7. Entry into the Literature	81	
References	81	
STRETCHING AND ALIGNMENT IN GEN	NERAL FLOW FIELDS:	
CLASSICAL TRAJECTORIES FROM REY	NOLDS NUMBER ZERO	
to Infinity	83	
M. Tabor		
1. Introduction	83	
2. $Re \rightarrow 0$: Simple Determinis Systems	tic Dynamical 84	
3. The Geometry of Trajector Rotation and Linking	ies: Stretching, 90	
4. $Re \rightarrow \infty$: Stretching in Tur	bulent Flows 98	

5. Alignment: The Interplay of Kinematics		102	
and Dynamics References			
Γ ΔST DY	NAMO THEORY	100	111
S. Ch	ildress		111
	 Kinematic Dynamos Slow and Fast Examples of Fast Dynamos in Steady and Unsteady Flows 	111 124	
:	3. Analysis of the Perfectly Conducting Limit	135	
	References	145	
PART II.	RELAXATION AND MINIMUM ENE STATES	RGY	149
Relaxat	Relaxation and Topology in Plasma Experiments		
J.B. 7	Taylor		
TAYLOR'S Space	S RELAXATION IN AN UNBOUNDED DOMAIN O	F	167
J.J. A	ly		
Force-f	REE MAGNETIC FIELDS WITH CONSTANT ALF	ЧА	177
S.I. V	ainshtein		
Minimum Topolog	1 Energy Magnetic Fields with Toroida gy	L	195
A.Y.]	K. Chui and H.K. Moffatt		
Research Announcement on the "Energy" of knots			219
Micha	ael H. Freedman and Zheng-Xu He		
PART III.	HELICITY, LINKAGE, AND FLOW TOPOLOGY		223
THE HEI	LICITY OF A KNOTTED VORTEX FILAMENT		225
R.L.	Ricca and H.K. Moffatt		
A HEIRA	RCHY OF LINKING INTEGRALS		237
N.W.	Evans and M.A. Berger		
Borrom	EANISM AND BORDISM		249
Peter	Akhmet'ev and Alexander Ruzmaikin		
Topolo	GY OF STEADY FLUID FLOWS		265
Vikto	or L. Ginzburg and Boris Khesin		

х

	PROPERTIES AND FINITE TIME SINGULARITIES	273
Extrema of the E	L PROPERTIES AND HAMILTONIAN STRUCTURE OF Suler Equations	275
T.G. 9	Shepherd	
BLOW UP	IN AXISYMMETRIC EULER FLOWS	293
A. Pu	mir and E.D. Siggia	
Is There Euler F	A FINITE-TIME SINGULARITY IN AXISYMMETRIC	303
Xiaog	ang Wang and A. Bhattacharjee	
Evidenci Incompr	e for a Singularity of the Three-dimensional essible Euler Equations	309
R.M.	Kerr	
Singulai Raleigh	RITY FORMATION ON VORTEX SHEETS: THE TAYLOR PROBLEM	337
M.S. 3	Siegel	
۹ ۲ , ۳илл	STRUCTURE OF TURBULENCE	351
2D IURB	$\begin{array}{c} \text{OLENCE: New Results FOR } Re \to \infty \\ \hline C \text{ Dritachel} \end{array}$	300
ON VOD	DEX DECONNECTION AND TURBULENCE	263
	N Borstay Richard B Polz and	300
	1. Doratav, michard D. I Ciz and	
Norm	an J. Zabusky	
Norm New Asi	an J. Zabusky PECTS OF VORTEX DYNAMICS: HELICAL WAVES,	
Norm New Asi Core Dy	an J. Zabusky Pects of Vortex Dynamics: Helical Waves, NAMICS, VISCOUS Helicity Generation, and	0.77
Norm New Ash Core Dy Interact	an J. Zabusky PECTS OF VORTEX DYNAMICS: HELICAL WAVES, (NAMICS, VISCOUS HELICITY GENERATION, AND FION WITH TURBULENCE Hussein and Moscows V. Molandon	377
Norm New Asi Core Dy Interact Fazle	an J. Zabusky PECTS OF VORTEX DYNAMICS: HELICAL WAVES, (NAMICS, VISCOUS HELICITY GENERATION, AND FION WITH TURBULENCE Hussain and Mogens V. Melander	37'
Norm New Asi Core Dy Interact Fazle Intermit V K:	an J. Zabusky PECTS OF VORTEX DYNAMICS: HELICAL WAVES, NAMICS, VISCOUS HELICITY GENERATION, AND FION WITH TURBULENCE Hussain and Mogens V. Melander PTENCY GROWTH IN 3D TURBULENCE	377 401
Norm New Asi Core Dy Interact Fazle Intermit Y. Ki	an J. Zabusky PECTS OF VORTEX DYNAMICS: HELICAL WAVES, (NAMICS, VISCOUS HELICITY GENERATION, AND FION WITH TURBULENCE Hussain and Mogens V. Melander FTENCY GROWTH IN 3D TURBULENCE MURA	37′ 401
Norm New Asi Core Dy Interact Fazle Intermit Y. Ki Dynamic in Fully	an J. Zabusky PECTS OF VORTEX DYNAMICS: HELICAL WAVES, (NAMICS, VISCOUS HELICITY GENERATION, AND FION WITH TURBULENCE Hussain and Mogens V. Melander TTENCY GROWTH IN 3D TURBULENCE mura AL MECHANISMS FOR INTERMITTENCY EFFECTS DEVELOPED TURBULENCE	377 401 415
Norm New Asi Core Dy Interact Fazle Intermit Y. Ki Dynamic in Fully Zhen-	an J. Zabusky PECTS OF VORTEX DYNAMICS: HELICAL WAVES, (NAMICS, VISCOUS HELICITY GENERATION, AND FION WITH TURBULENCE Hussain and Mogens V. Melander TENCY GROWTH IN 3D TURBULENCE MURA CAL MECHANISMS FOR INTERMITTENCY EFFECTS DEVELOPED TURBULENCE Su She	377 401 415
Norm New Asi Core Dy Interact Fazle Intermit Y. Ki Dynamic in Fully Zhen- The Mut Mittenc	an J. Zabusky PECTS OF VORTEX DYNAMICS: HELICAL WAVES, (NAMICS, VISCOUS HELICITY GENERATION, AND FION WITH TURBULENCE Hussain and Mogens V. Melander TENCY GROWTH IN 3D TURBULENCE MURA CAL MECHANISMS FOR INTERMITTENCY EFFECTS DEVELOPED TURBULENCE Su She UTISPIRAL MODEL OF TURBULENCE AND INTER- Y	37' 40: 41: 42:

xi

xii

Measurements of Local Scaling of Turbulent Velocity Fields at High Reynolds Numbers		
G.M. Zaslavsky, A.A. Chernikov, A.A. Praskovsky, M.Yu. Karyakin and D.A. Usikov		
On the Determination of Universal Multifractal Parameters in Turbulence D. Lavallée, S. Lovejoy, D. Schertzer and F. Schmitt	463	
PART VI. CHAOS, INSTABILITY AND DYNAMO THEORY	479	
Anomolous Transport and Fractal Kinectics	481	
G.M. Zaslavsky		
KINEMATICAL INSTABILITY AND LINE-STRETCHING IN		
RELATION TO THE GEODESICS OF FLUID MOTION	493	
T. Kambe, F. Nakamura and Y. Hattori		
THE BEHAVIOR OF ACTIVE AND PASSIVE PARTICLES IN A CHAOTIC FLOW	505	
M.D. Dahleh		
CHAOS ASSOCIATED WITH FLUID INERTIA	517	
K. Bajer and H.K. Moffatt		
INSTABILITY CRITERIA IN FLUID DYNAMICS		
Susan Friedlander and Misha M. Vishik		
LOCALIZED INSTABILITIES IN FLUIDS	551	
Alexander Lifschitz and Eliezer Hameiri		
KINEMATIC FAST DYNAMO ACTION IN A TIME-PERIODIC CHAOTIC FLOW	563	
I. Klapper		
An Exact Turbulent Closure for the Hydromag- netic Dynamo	573	
Hubert H. Shen		
AUTHOR INDEX	599	
SUBJECT INDEX	603	