PREFACE

PART I NUMERICAL GRID GENERATION TECHNIQUES

Page No.

SECTION I GENERAL TECHNIQUES

Generation of FAC Patched Grids J.W. Thomas and S.M. McKay	1
Knowledge-Based Flow Field Zoning A. E. Andrews	13
Grid Generation by Using Boundary Integral Element Method Ting-Kuei Tsay	23
Algebraic Boundary-Conforming Grid Generation Around Wing/Tail-Body Configurations M.M. Alisahi and M. Farid	31
Quasi-Three-Dimensional Grid Generation by an Algebraic Homotopy Procedure A. Moitra	41
An Algebraic Procedure to Generate 3D Grids for Complex Arterial Flow Geometries A.H. MazHer	51
Fast Interpolation Schemes for Moving Grids C.W. Mastin	63
Three-Dimensional Zonal Grids About Arbitrary Shapes by Poisson's Equation R.L. Sorenson	75
Surface Grid Generation for Complex Three-Dimensional Geometries R.C.C. Luh	85

Grid Generation Software Engineering at Los Alamos G.L. Clark and L.A. Ankeny	95
Parallel Element-by-Element Grid Generation E. Barragy and G.F. Carey	105
Mesh Generation on Parallel Computers W. Gentzsch and J. Häuser	113
Surface Constrained Grid Generation with Lagrange Multipliers L.L. Eyler and M.D. White	125
A Fast Method for the Elliptic Generation of Three- Dimensional Grids with Full Boundary Control A. Hilgenstock	137
Hyperbolic Grid Generation Techniques for Blunt Body Configurations K.A. Hoffman, W.H. Rutledge and P.E. Rodi	147
A New Approach to Grid Generation Using Finite Element Technique V.C.V. Rao, T. Sundararajan and P.C. Das	157
Surface Grid Generation for Composite Block Grids G.A. Jones, J.F. Thompson and Z.U.A. Warsi	167
A New Approach to Grid Generation Based on Local Optimisation A. Kumar and N.S. Kumar	177
Effect of the Grid System on the Solution of Euler Equations K.A. Hoffman, T-L. Chiang and J.J. Bertin	185
Patch Structured Surface Grid With Dynamic Curvature Clustering Y. Wang and P.R. Eiseman	195
Surface Grid Generation Through Elliptic PDE's Z.U.A. Warsi and W.N. Tiarn	207
Algebraic Generation of Smooth Grids J. Zhu, W. Rodi and B. Schoenung	217

SECTION 2 ADAPTIVE, ORTHOGONAL AND MAPPING METHODS

A Semi-Analytical Procedure for the Conformal Mapping of Arbitrary Airfoil Contours H. Schutz and F. Thiele	227
A Transient Automated Mapping Procedure for Complex Geometries P.E. Raad and J.W. White	237
A Direct Variational Grid Generation Method: Orthogonality Control J.E. Castillo	247
Grid Adaptivity with Evolutionary Control M. Bockelie and P.R. Eiseman	257
Automatic Generation of Orthogonal Cartesian Networks for the Direct Solution of Differential Problems on General Shape Three-Dimensional Domains by Means of Generalized Finite Differences L. De Biase, A. Galli and V. Pennati	269
Three-Dimensional Self-Adaptive Grid Method for Complex Flows M.J. Djomehri and G.S. Deiwert	277
Numerical Generation of Nearly Orthogonal Boundary- Fitted Coordinate System C.J. Chen, K.M. Obasih and T-S. Wung	289
Adaptive Grid Generation from Harmonic Maps A.S. Dvinsky	29 9
Three-Dimensional Adaptive Grid Generation for Body-Fitted Coordinate System S.C. Chen	309
A Comparison of Two Adaptive Grid Techniques J.F. Dannenhoffer III	319
Solution-Adaptive Grids for Transonic Flows D. Catherall	329
Adaptive Techniques for Boundary Grid Generation R.M. Coleman	339

Pa	age No.
Adaptive Orthogonal Surface Coordinates R. Arina	351
Adaptive Grid Technique Applied to Stagnation Point Hypersonic Low Density Flow A.C. Jain and B. Murali	361
Algebraic Generation of 3-D Partially Orthogonal and Surface Oriented Coordinate Grids E. Steck, L. Kullmann and K.O. Felsch	373
The Construction of Component-Adaptive Grids for Aerodynamic Geometries J.A. Shaw, J.M. Georgala and N.P. Weatherill	383
A Novel Adaptive Finite Element Technique Based on Poisson Grid Generation Equations M.S.M. Krishna and T. Sundararajan	395
A Variational Method for the Optimization and Adaptation of Grids in Computational Fluid Dynamics O.P. Jacquotte and J. Cabello	า 405
On An Adaptive Grid Generation Technique for Transonic Turbulent Projectile Aerodynamics Computation C-C. Hsu and S-C. Yang	415
Orthogonal Curvilinear Coordinary Generation for Internal Flows M.R. Albert	425
A Depth-Adaptive Grid Using a Control-Function Approach P. Nielsen and O. Skovgaard	435
Solution Adaptive Meshes with A Hyperbolic Grid Generator G.H. Klopfer	443
Solution-Adaptive Grid Generation Using a Parametric Mapping K.D. Lee, J.M. Loellback and T.R. Pierce	455
Zonal Grid Applications to Computations of Transonic Flows C-Y. Gu and L. Fuchs	465
Solution Adaptive Parabolic Grid Generation in Two and Three Dimensions I.H. Parpia and R.W. Noack	475

Pag	е	N	о.

	Tage NO.
Self-Adaptive Grids in Arbitrarily Shaped Regions J.B. Greenberg	485
Requirements For The Adaptive Grid Navier-Stokes Analysis of Complex 3-D Configurations and Flowfields J.E. Holcomb	495
SECTION 3 MULTI-BLOCK	
AND MULTI-	
GRID METHODS	5
Three-Dimensional Grid Generation About a Submarine J.S. Abolhassani and R.E. Smith	505
A Graphic-Iterative Program-System to Generate Composite Grids for General Configurations W. Seibert	517
Multiblock Grid Generation for Afterbody Problems G.B. Deng, Y. Lecointe, J. Piquet and M. Visonneau	529
Three-Dimensional Parametric Block Grid Regeneration With Localized Solution Adaption J.P. Steinbrenner and D.A. Anderson	539
Three-Dimensional Composite Grid Generation by Domain Decomposition and Overlapping Technique K. Miki and K. Tago	549
Techniques in Multiblock Domain Decomposition and Surface Grid Generation S.E. Allwright	559
Application of Multiblock Grid Generation Approach to Aircraft Configurations A. Klunover, T.J. Kao and N.J. Yu	569
Interactive Multi-Block Grid Generation D.J. Amdahl	579
SECTION 4 UNSTRUCTURE	D
GRID GENERAT	
(ADAPTIVE AND NON ADAPT	
Constraint of the Boundary and Automatic Mesh Generation	589

Generation P.L. George, F. Hecht and E. Saltel

<u>Page No,</u>

Unstructured Grid Adaption for Non-Convex Domains S.R. Kennon and D.A. Anderson	599
Adaptive Mesh Generation for Viscous Flows Using Delaunay Triangulation D.J. Mavriplis	611
A Three-Dimensional Unstructured Mesh Generator for Arbitrary Internal Boundaries E.K. Buratynski	621
Quadtree/Octree Meshing with Adaptive Analysis J.H. Cheng, P.M. Finnigan, A.F. Hathaway, A. Kela and W.J. Schroeder	633
The Generation of Unstructured Triangular Meshes Using Delaunay Triangulation D.G. Holmes and D.D. Snyder	643
2-D and 3-D Unstructured Mesh Adaption Relying on on Physical Analogy P. Palmerio and A. Dervieux	653
Discretization Formulas For Unstructured Grids K.J. Baumeister	665
Generation of Tetrahedral Meshes Around Complete Aircraft T.J. Baker	675
Interactive Generation of Unstructured Grids for Three Dimensional Problems R. Löhner, P. Parikh and C. Gumbert	687
Numerical Simulation of Shock-Box Interaction Using An Adaptive Shock Capturing Scheme J.D. Baum and R. Löhner	699
Finite Octree Mesh Generation for Automated Adaptive Three-Dimensional Flow Analysis M.S. Shephard, F. Guerinoni, J.E. Flaherty, R.A. Ludwig and P.L. Baehmann	709
A Generator of Tetrahedral Finite Elements for Multi-Material Objects or Fluids A. Perronet	719
On The Combination of Structured-Unstructured Meshes N.P. Weatherill	729

PART II APPLICATIONS

SECTION 1 GRIDS OVER AIRCRAFT

Application of a Three-Dimensional Finite Element Grid Generation Scheme for an F-16 Aircraft Configuration A. Ecer, J.T. Spyropoulos and E. Bulbul	741
Surface Grid Generation for Advanced Transport Configurations J.E. Melton and R.G. Langhi	751
Application of I-DEAS Grid Generator for Three- Dimensional Transonic Flow Analysis R.K. Rout	761
Grid Generation for an Aft-Fulselage-Mounted Nacelle /Pylon Configuration N.D. Halsey	775
Zonal Grid Generation for Fighter Aircraft E.H. Atta	785
Geometric Modelling of Complex Aerodynamic Surfaces and Three-Dimensional Grid Generation T. Sonar and R. Radespiel	795
Interactive Grid Generation for Fighter Aircraft Geometries R.E. Smith and E.L. Everton	805
Multiple-Block Grid Adaption for an Airplane Geometry J.S. Abolhassani and R.E. Smith	815

SECTION 2 NAVIER-STOKES EQUATIONS

Numerical Study of Cavity Flow for a Second Grade Fluid G. Grossman and B. Wheatley	825
Hybrid Coordinates for 3-D Boundary Layer Calculations N. Grün	835

Page No.

An Analysis of Severe Grid Distortion Effects on the Accuracy of Some Discretization Schemes for Convection- Diffusion Equations E. Renard and J.A. Essers	845
A Zonal Finite Element Grid Generation for 3-D Viscous Flow Analysis Ü. Gülcat, E. Gürgey and H.R. Kul	855
SECTION 3 TURBOMACHINE	RY
CAGD in Turbomachinery B. Ozell and R. Camaréro	865
Interactive Design of 3-D Grids for Propellers Y. Lauzé, R. Camaréro and D. Pelletier	875
Grid Generation and Its Application to Turbulent Separated Flows J.P. Maruszewski and R.S. Amano	885
Interactive Grid Generation for Turbomachinery Flow Field Simulations Y.K. Choo, P.R. Eiseman and C. Reno	895
C-Grid Generation for Turbomachinery Cascades R.M. Moore and J.D. Hoffman	905
GENIE: Generation of Computational Geometry-Grids for Internal-External Flow Configurations B.K. Soni	915
Numerical Interactive Grid Generation for 3D-Flow Calculations J.M.J.W. Jacobs, A. Kassies, J.W. Boerstoel, F. Buijsen	925
SECTION 4 COMPUTATIONAL HYDRAULICS	

The Interaction of Waves with Large Submerged Structures via Boundary-Fitted Coordinates R.R. Hwang and H-C. Fan	945
Grid-Induced Computational Flow Separation R.S. Bernard	955
Numerical Modelling of Water-Wave Refraction/ Diffraction in Regional Coastal Area T-K. Tsay, B.A. Ebersole and P.L-F. Liu	965

SECTION 5 HEAT TRANSFER

AND FLUID FLOW

Dynamic Mesh Adaption for Unsteady Nonlinear Phenomena - Application to Flame Propagation F. Benkhaldoun, P. Leyland and B. Larrouturou	977
Grid Generation for the Analysis of Dispersed Phase Motion in Two Phase Flows N. Kurul and M.Z. Podowski	987
A Solution Method for Natural Convection in Enclosures with Inner Bodies of Arbitrary Shapes E.K. Glakpe	997
Application of Self-Adaptive Grid Method in Thermophoretic Flow Past a Circular Cylinder S. Jayaraj and V.K. Garg	1009
SECTION 6 MISCELLANEOU	S
Study of Flow in Single Rock Fractures K. Muralidhar	1019

K. Muralidhar		
Numerical Grid Generation Use Finite Element Analyses of Met A.M. Lush		1029
Automatic Grid Control in Devi G. Nanz, W. Kausel and S. Se		1039
Automatic Mesh Generation for Crack Propagation Analysis T. Taniguchi	Two Dimensional	1049
Application of Biharmonic Grid Thermal Stress Analysis D.C. DeHeer, N.R. Sottos and		1059