CONTENTS

1. GENERAL LECTURES

Numerical Modelling of the Global Atmosphere L. Bengtsson1-3
Overview of the Finite Element Method in Groundwater
T. N. Narasimhan and P. A. Witherspoon
Solving Turbulent Flow Problems Using the FEM C. Taylor1-45
2. MATHEMATICS UND NUMERICAL TECHNIQUES
Petrov-Galerkin Schemes for the Steady State Convection- Diffusion Equation M. Ahués and M. Telias 2-3
Hybrid and Mixed Finite Elements in Fluid Mechanics S. N. Atluri 2-13
The Reliability Estimates and Adaptivity in Finite Element Engineering Computations I. Babuska
On the Accuracy and Efficiency of a Finite Element Algorithm for Hydrodynamic Flows A. J. Baker and M. O. Soliman
Implementation of a Direct Method for the Biharmonic Problem in the Context of a Code Using Substructuration A. Bossavit
Discrete Optimization of Finite-Element Solutions: A Concept Discussed for the Diffusion-Advection Problem S. Gärtner
On a Direct Approach for the Solution of Linear Space- Invariant 2-D Differential Convolution Models F. C. Incertis

Mixed Finite Element Methods for Nonlinear Problems M. A. Noor and Kh. Z. Elahi, K. I. Noor
Certain Variational Principles with no Constraints for Fluid-Solid Strong Interaction N. Sarigül and M. C. Dökmeci
3. SOLUTION OF THE NAVIER-STOKES EQUATIONS
Convective and Radiative Transfer Past a Porous Flat Plate in Compressible Flow A. R. Bestman3-3
Effective Transient Compressible Flow Analysis in Pipe Nétworks 0. Ohtmer
Continuation Methods for the Finite Element Solution
D. R. Schamber, B. E. Larock, and B. A. DeVantier3-23
The Application of FEM and FDM to Flow Separation Pattern; A Comparison Study N. A. Zaghloul3-33
4. OPEN CHANNEL FLOW CALCULATIONS
 <u>OPEN CHANNEL FLOW CALCULATIONS</u> A Distributed Rainfall-Runoff Model F. J. Aparicio and M. Berezowsky4-3
 <u>OPEN CHANNEL FLOW CALCULATIONS</u> A Distributed Rainfall-Runoff Model F. J. Aparicio and M. Berezowsky
 4. <u>OPEN CHANNEL FLOW CALCULATIONS</u> A Distributed Rainfall-Runoff Model F. J. Aparicio and M. Berezowsky
 4. <u>OPEN CHANNEL FLOW CALCULATIONS</u> A Distributed Rainfall-Runoff Model F. J. Aparicio and M. Berezowsky
 4. <u>OPEN CHANNEL FLOW CALCULATIONS</u> A Distributed Rainfall-Runoff Model F. J. Aparicio and M. Berezowsky
 4. <u>OPEN CHANNEL FLOW CALCULATIONS</u> A Distributed Rainfall-Runoff Model F. J. Aparicio and M. Berezowsky

A Time Integration Technique for Modelling of Small Amplitude Tidal Waves V. Argintaru and L. Spraggs5-17
Formulating a Three-Dimensional Hydrodynamic Sea Model Using a Mixed Galerkin-Finite Difference Method A. M. Davies5-27
Feasability of Finite Element Methods for Oceanic General Circulation Modelling E. Dumas, Ch. Le Provost, and A. Poncet5-43
The Use of Kalman-Bucy Filters in Forecasting the Water Levels in the Dutch Coastal Area A. W. Heemink and B. de Jong5-57
Time-Weighting of the Momentum Equation in Explicit Wave Equation Models of Surface Water Flow I. P. E. Kinnmark and W. G. Gray
Formulating Layered and Semi-Analytic Finite Element Flow Programs with Variable Eddy Viscosity J. P. Laible
Tidal Propagation in a Rectangular Basin of the Bay of Fundy M. Rahman5-91
F. E. Analysis of Waves in a Semi-Infinite Layer of Fluid P. Wilde and K. Szmidt5-101
6. SIMULATION OF TIDAL AND OCEAN FLOW PROCESSES
Numerical Modeling of Storm Surge Generation Phenomena S. A. Dendrou, C. I. Moore, and B. A. Dendrou6-3
Typhoon Surge Analysis by Selective Lumping Two Step Ex- plicit Finite Element Method M. Kawahara
Tidal River Flow Calculations with Measured Velocities on the Open Boundaries A. Nehlsen, W. Michaelis and A. Müller
Residual Currents During Changing Meteorological Circumstances N. Praagman
Some Computational Problems of Oceanography W. C. Thacker

7. LAKE CIRCULATION

Computation of Wind-Driven Circulation in Shallow Lakes B. L. Jackowski7-3		
A Three-Dimensional Finite Element Model For Stratified Flow I. P. King7-13		
Finite Element Analysis of Water Quality in Lake Erie D. C. L. Lam7-23		
Calculation of Lake Circulation with Threedimensional Finite Elements J. Trösch7-33		
8. MODERN SOFTWARE DEVELOPMENTS		
A Microcomputer Program for Design of the Self Retiming Mechanics of Large Tidal Power Sites H. Kinno8-3		
Automatic Generation of Finite Element Network for Bi- Dimensional and Quasi-Three-Dimensional Equations Governing the Groundwater Flow L. Sartori, V. Aurelio, M. Riccioni, and G. Svarca8-13		
Procedure of Mesh Data Generation in Codes for the Ana- lysis of Viscous Flow M. A. Sebastián, J. M. Pérez, and A. M. Sánchez8-25		
9. NUMERICAL TECHNIQUES IN GROUNDWATER FLOW		
Some Experiences Using Finite Element Methods for Fluid Flow Problems K. J. Bathe, V. Sonnad and P. Domigan9-3		
Software Developments for Finite Element Applications R. Damrath9-17		
Finite Element Analysis of Interface Problem in Non- Steady Seepage I. Kohno and M. Nishigaki9-35		
A Frontal Method Based Solution of the Quasi-Three- Dimensional Finite Element Model for Interconnected Aquifer Systems and Fluid Mass Balance Evaluation. Steady and Unsteady Equations. L. Sartori and G. Peverieri		

Solution of Immiscible Displacement in Porous Media Using the Collocation Finite Element Method A. M. Shapiro and G. F. Pinder
The Streamfunction Method A Direct Approach to Simulate Groundwater Flow G. Willms

10. SIMULATION OF GROUNDWATER FLOW

Influence of a Soil Pipe Network on Catchment Hydrology M. D. Barcelo and J. L. Nieber10-3
Adaptation of FEAP for Seepage with a Free Surface A. Das Gupta and G. Mustafa10-15
Finite Element Computations of Horizontal Groundwater Flow with Moving Boundaries B. Herrling10-25
Finite-Element Investigation of the Groundwater Basin of the Szentendre Island, Hungary G. Molnár and G. Popper10-41
Interconnected Groundwater Systems Simulation (IGROSS) Description of the System and its Application to the Western Libya Regional Aquifer G. Pizzi and L. Sartori
Finite Element Simulation of the Transient Exploita- tion of a Coastal Aquifer A. Sá da Costa10-61
Numerical Simulation of Infiltration into Porous Media and Response of the Water Table F. Stauffer10-73
Comparison of Three Models of a Dual Aquifer System K. Swaminathan and K. Elango
11. GROUNDWATER, SOIL AND INTERACTION
A Hybrid Model to Simulate Landsubsidence Due to Groundwater Recovery

A Hybrid Model to Simulate Landsubsidence Due to	
Groundwater Recovery	
F. B. J. Barends	-3
Finite Element Analysis of Soil Moisture Flow and	
Moisture Stress in a Dessicating Soil	
J. L. Nieber	-13

12. FLOW IN ROCKY MATERIAL

Nu	merical Modelling of Rubble Mound Breakwaters A. A. Hannoura and F. B. Barends
Fi	nite Element Simulation of Contaminant Transport Fractured Rock near Karlshamn, Sweden A. M. Shapiro and J. Andersson
13.	TRANSPORT PROCESSES IN GROUNDWATER FLOW
Fi and Ind	nite Element Solutions of Coupled Groundwater Flow d Transport Equations under Transient Conditions cluding the Effect of the Selected Time Step Sizes S. C. Anand and A. Pandit
Nur Eqi	merical Estimation of the Solution of the Diffusion uation with fixed Dirichlet-Type Boundary Conditions J. Chołast and A. Niemiec
The Gre	e Principal Direction Technique: A New Approach to oundwater Contaminant Transport Modelling E. O. Frind13-25
Nur Uns	merical Solution of Heat and Water Transport in an saturated Freezing Soil U. Hornung13-43
FE	Model of Stochastic Ground Water Pollution M. Majumdar and S. Majumdar
14.	NUMERICAL TECHNIQUES FOR THE SOLUTION OF THE TRANSPORT EQUATION
On vec	the Numerical Solution of the Diffusion-Con- ction Equation J. F. Botha, B. M. Herbst and S. W. Schoombie14-3
Tra nat	ansport Simulation Using Three Dimensional Alter- ting Direction Collocation M. A. Celia and G. F. Pinder
The Sci	e Discrete Element Method for Different Upwind hemes and Curving Boundaries J. Häuser, D. Eppel and F. Tanzer
Fir	nite Element Techniques in Transport Phenomena J. C. Heinrich and E. Envia

Eulerian-Lagrangian Methods for Advection-Dispersion S. P. Neuman and S. Sorek	1
Numerical Solution of Diffusive-Convective Differential Problems by General Finite Difference Forms M. Reali, R. Rangogni and V. Pennati	9
Petrov-Galerkin Methods for Two Dimensional Flow Cal- culations R. Wait and M. Parsaei14-7	7
Numerical Solution of Three-Dimensional and Time-Depen- dent Advection-Diffusion Equations by Collocation Methods H. Wengle14-8	17
15. SIMULATION OF TRANSPORT PROCESSES	
Thermal Discharge Analysis in StLawrence River by Finite Elements: A Case Study J. F. Cochet, G. Dhatt and G. Hubert	}
Water Quality Modeling with Finite Elements and Inter- active Graphics P. N. French15-1	.1
Tidal Current and Substance Dispersion by Finite Element Method Using Finite Difference Technique K. Murakami and M. Morikawa	21
Simulation Analysis for Diffusion of Discharged Warm Water in the Bay by Finite Elements T. Tanaka, Y. Ono and K. Nakata	31
16. NUMERICAL MODELS OF SEDIMENT TRANSPORT	
Hydrotransportation as a Point Process M. Erlich and A. Niemiec16-3	}
Finite Element Modelling of Sediment Transport in an Estuary A. Fritz and KP. Holz16-1	.1
Mathematical Modelling of Time Dependent Wave Attenuation and Discrete Solid Body Transport in Gravity driven Partially Filled Pipe Flows J. A. Swaffied, S. Bridge and L. S. Galowin16-2	21
Computer Simulation of Sedimentation Processes S. Y. Wang16-3	35

17. FLOW INDUCED FORCES IN STRUCTURES

	A New Hydrodynamic Model for Restricted Fluid Domains A. S. Arcilla17-3
	Wave Action on Floating Structures and Wave Propaga- tion Using Finite Elements Method A. Lejeune, J. Marchal, Th. Hoffait, M. Sahloul and S. Grilli17-13
	Numerical Solution of Some Linear Evolution Problems in Naval Hydrodynamics C. Licht17-25
	Calculation of the Value of the Hydrodynamic Forces Acting on a Culvert Tainter Valve by Means of the Finite Elements Method V. Strauss
	Simulation of Free Jet Trajectories for the Design of Aeration Devices on Hydraulic Structures C. Y. Wei and F. G. DeFazio
	18. PARAMETER ESTIMATION AND OPTIMIZATION
	A General Approach doe Water Quality V. Eroğlu and M. Yücel18-3
	Aquifer Parameter Identification Using Stochastic Approximation S. K. Goyal18-7
	Identification of Soil Parameters for an Infiltra- tion Problem
	U. Hornung and W. Messing18-15
	Optimal Operation of Wells in a Multilayered Leaky Aquifer T. Kawatani18-25
,	19. BOUNDARY ELEMENT METHOD
	Some Applications of the Boundary Element Method for Potential Problems C. A. Brebbia19-3
	Boundary Element Method: Processing of the Source Term of the Poisson Equation by Means of Bourdary Integrals only A. Di Monaco and R. Rangogni

Finite	Element Analysis	of Momentum Transfer in
Rivers	or Complex Cross	Section
М.	Radojkovic and M.	. Ivetic

SUPPLEMENTS