Contents

	Preface	page ix
1	General introduction – author to reader	1
	PART 1: THE SIMPLE CLASSICAL VIBRATOR	
2	The free vibrator	
	Introduction: the special role of harmonic vibrators Anharmonic simple vibrators Using energy conservation to calculate vibration frequency Systems with more than one mode Dissipation Maintained vibrations	7 12 21 24 30 39
3	Applications of complex variables to linear systems	
	Complex exponential solutions to equations of motion The complex <i>p</i> -plane Complex frequency; conventions The vibration diagram Circuit analysis Work and power Waves Circular polarization	44 46 52 53 55 56 57 62
4	Fourier series and integral	
	Synthesis of waveforms; Fourier series Beats and related phenomena The Fourier integral Noise White noise Autocorrelation	63 67 69 79 90 93
		V

vi Contents

5 Spectrum analysis

Computation of Fourier transforms	page 97
The ear and the eye; optical spectrometers	100
Linear transducers; response functions	105
Causality	107
Resonant filters: sound spectrograph	113
Mixing and combination tones	121

6 The driven harmonic vibrator

Transfer function, compliance, susceptibility, admittance,	
impedance	128
The form of the resonance curve	134
Low-Q resonant peaks	140
Transient response	142
Response of a resonant system to noise	152

7 Waves and resonators

Preliminary remarks about one-dimensional waves; charac-	
teristic impedance and admittance	161
Analogues of characteristic impedance	169
Resonant lines	171
Finger-holes in woodwind instruments	175
Radiation from an open end	179
Resonators attached to transmission lines	184
Excitation of a resonator by a plane wave	195
Anomalous dispersion	204

8 Velocity-dependent forces

Coriolis and Lorentz forces	209
Whirling	212
The gyro-pendulum	216
The gyromagnetic top	218
Nuclear magnetic resonance	223
The physical mechanism of relaxation	230
Cyclotron resonance	237
Helicons	239

9 The driven anharmonic vibrator; subharmonics; stability

Slightly anharmonic vibrators	248
An example of subharmonic excitation	253

Contents

Behaviour of simple systems near equilibrium	page 254	1
Examples of instability	259)
The slightly anharmonic vibrator revisited	266	5
Stability of a system with more than two independent		
variables	267	7
Stability testing by discrete sampling (stroboscopic method) 268	3
The subharmonic generator revisited	271	L
The cyclotron, and Azbel'-Kaner cyclotron resonance	275	5
Conditions for subharmonic generation	278	3

10 Parametric excitation

Detailed analysis of parametrically excited systems	289
Parametric amplifiers	301

11 Maintained oscillators

The feedback principle	306
Negative resistance and spontaneous oscillation	311
Negative resistance by means of feedback; class C oscillators	314
The pendulum clock, a non-linear class C oscillator	323
Further examples of negative-resistance oscillators	326
(a) A resistive feedback network	326
(b) The tunnel diode	330
(c) Mechanical analogues of negative and non-linear	
resistance; Liénard's construction	333
(d) The maser	345
Saturation of negative-resistance oscillators	348
Multivibrator	353
Relaxation oscillators	359
The effect of noise on a class C oscillator	361

12 Coupled vibrators

Coupled passive vibrators	366
Energy and normal modes	372
Examples of coupled vibrators	376
Coupled lossy vibrators	379
Impedances and impulse response functions for coupled	
circuits	381
Coupled active and passive vibrators	385
The Huygens phenomenon (entrainment)	391
Frequency-locking of a multivibrator	405
Locking of multivibrator to a resonant circuit	413
Superconducting weak links (Josephson junctions)	416

viii Contents

References	<i>page</i> 424
Index	428

Note: Equations, diagrams and references are numbered serially in each chapter, and the chapter number is omitted if it is something in the same chapter that is referred to. Thus (4.23) in chapter 7 means equation 23 of chapter 4; (23) in chapter 7 means equation 23 in that chapter.

Cross-references are given as page-numbers in the margin.