CONTENTS

Contributors	
Preface	

ix xi

1

Relaxation Processes in Sound Propagation in Fluids: A Historical Survey

R. BRUCE LINDSAY

1.	Introduction	1
2.	Attenuation of Sound in a Viscous and Heat-Conducting	
	Fluid as a Classical Relaxation Process	3
3.	Sound Propagation as a Molecular Process	6
4.	Jeans' Theory of Propagation of Sound through a Gas	
	Composed of Loaded Spheres	10
5.	EINSTEIN'S INVESTIGATION OF SOUND PROPAGATION IN	
	Partially Dissociated Gases	13
6.	Application of the Relaxation Concept to Sound	
	DISPERSION AND ABSORPTION BY HERZFELD AND RICE	18
7.	The Investigations of Bourgin on the Propagation of	
	Sound in Gases	21
8.	Kneser's Research on the Dispersion of Sound due to	
	Relaxation Processes	21
9.	Henry's Investigation of Energy Exchanges	
	BETWEEN MOLECULES	26
10.	KNESER'S CONTRIBUTION TO THE MOLECULAR RELAXATION	
	THEORY OF SOUND ABSORPTION	26
11.	The Collaboration of Knudsen and Kneser in Studies of	
	Anomalous Sound Absorption in Gases	28
12.	Relaxational Theories for the Excess Absorption of	
	Sound in Liquids	30
13.	Relaxation in the Theory of Sound Attenuation	
	in Solids	34
	References	35

2

Acoustic Vibrational Modes in Quartz Crystals: Their Frequency, Amplitude, and Shape Determination

HARISH BAHADUR AND R. PARSHAD

1.	Introduction	38
2.	VIBRATIONAL MODES OF QUARTZ CRYSTALS	38
3.	SURVEY OF EXPERIMENTAL METHODS FOR DETERMINATION OF	
	Mode Shapes, Frequencies, and Amplitudes of Vibrations	
	OF QUARTZ CRYSTALS	67
4.	Conclusion	165
	References	165

3

Electron and Phonon Drag on Mobile Dislocations in Metals at Low Temperatures

J. M. GALLIGAN

1.	INTRODUCTION	173
2.	REVIEW OF PRIOR EXPERIMENTAL WORK ON ELECTRON DRAG	
	IN SUPERCONDUCTORS	176
3.	RECENT EXPERIMENTAL WORK ON MOBILE DISLOCATION	
	Densities and Dislocation Drag in Superconductors and	
	Normal-State Metals	180
4.	Discussion	209
	References	214

4

Two-Pulse Phonon Echoes in Solid-State Acoustics

K. Fossheim and R. M. Holt

1.	Introduction	218
2.	Backward-Wave Echoes	221
3.	Acoustic Spin Echoes	259
4.	Powder Echoes	263
5.	Concluding Remarks	292
	References	292

5

Dynamic Polarization Echoes in Powdered Materials

Koji Kajimura

1.	Introduction	295
2.	ANHARMONIC OSCILLATOR MODEL	299
3.	Parametric Field–Mode Interaction Model	321
4.	EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY	325
5.	Concluding Remarks	337
	References	339

6

Memory Echoes in Powders

R. L. MELCHER AND N. S. SHIREN

1.	INTRODUCTION	341
2.	GENERAL SURVEY OF EXPERIMENTAL DATA	343
3.	The Particle Rotation Model	345
4.	Internal Deformation Models	349
5.	Experimental Method	354
6.	Experimental Observations	356
7.	Conclusions	376
	Appendix A. Derivation of Torque Equation from the	
	Three-Dimensional Motion of a Particle	
	in a Field	376
	Appendix B. Field Orientation Dependence for the	
	ROTATION MODEL	379
	Appendix C. Field Orientation Dependence for the	
	Internal Deformation Model	381
	References	382

7

Fiber Optic Acoustic Transduction

J. A. BUCARO, N. LAGAKOS, J. H. COLE, AND T. G. GIALLORENZI

1.	INTRODUCTION	385
2.	Optical Fiber Types	386
3.	Mach–Zehnder Fiber Interferometer	389

Contents

4. Single-Fiber Interferometer	415
5. POLARIZATION SENSORS	420
6. Optical Intensity Fiber Sensors	424
7. Evanescent Field Fiber Coupler Sensors	436
8. Hybrid Fiber Sensors	439
9. PRACTICAL SENSOR IMPLEMENTATION	445
References	455
Author Index	459
Subject Index	468
CONTENTS OF PREVIOUS VOLUMES	

viii