CONTENTS

CONTRIBUTORS	v
PREFACE	vii
CONTENTS OF OTHER VOLUMES	xν

1

Use of Sound Velocity Measurements in Determining the Debye Temperature of Solids

GEORGE A. ALERS

I.	INTRODUCTION	1
$\mathbf{II}.$	REVIEW OF DEBYE THEORY	2
III.	Methods of Determining $ heta_0$ from the Elastic Moduli	5
IV.	COMPARISON WITH SPECIFIC HEAT DATA	32
V.	Conclusion	40
	References	40

2

Determination and Some Uses of Isotropic Elastic Constants of Polycrystalline Aggregates Using Single-Crystal Data

O. L. ANDERSON

I.	INTRODUCTION	43
II.	THE COMPUTER PROGRAM FOR COMPUTING ELASTIC CONSTANTS	47
III.	THE ISOTROPIC MODULI OF POLYCRYSTALLINE ALUMINA,	
	MAGNESIA, TITANIA, TUNGSTEN, AND THREE CARBIDES	48
IV.	Some Useful Approximations Using the VRH Moduli	54
V.	The Relation among Sound Velocity, Density, and Molecu-	
	LAR WEIGHT	55
VI.	The Relation between Debye Temperature and Density	
	FOR OXIDES	62
VII.	The Physical Implications of $v_{l/p} = \text{Constant}$ for Oxides	64
	REFERENCES	75
	Appendix I. Elastic Moduli for Single-Crystal Solids	77
	Appendix II. Isotropic Moduli Computed from Elastic Con-	
	STANTS GIVEN IN APPENDIX I	84
	Appendix III. References for Moduli for Solids Listed	
	IN APPENDIX I	91

The Effect of Light on the Mechanical Properties of Alkali Halide Crystals

ROBERT B. GORDON

Ι.	Observed Phenomena	98
II.	DISCUSSION	117
	References	125

4

Magnetoelastic Interactions in Ferromagnetic Insulators

R. C. LECRAW and R. L. COMSTOCK

Ι.	INTRODUCTION	127
$\mathbf{II}.$	LINEAR MAGNETOELASTIC INTERACTIONS	129
III.	Instabilities of Magnetoelastic Waves	152
IV.	Loss Mechanisms and Properties of Materials	165
	APPENDIX. MAGNETOELASTIC ENERGY FOR ARBITRARY ORIEN-	
	TATION OF THE MAGNETIC FIELD	194
	References	197

5

Effect of Thermal and Phonon Processes on Ultrasonic Attenuation

P. G. KLEMENS

I.	INTRODUCTION	201
ÎI.	LATTICE WAVES	202
III.	ATTENUATION OF ULTRASONIC BEAMS IN THE HIGH-FREQUENCY	
	LIMIT	219
IV.	ATTENUATION OF ULTRASONIC BEAMS IN THE LOW-FREQUENCY	
	LIMIT	227
	References	232

xii

Contents

6

Effect of Impurities and Phonon Processes on the Ultrasonic Attenuation of Germanium, Crystal Quartz, and Silicon

WARREN P. MASON

I.	INTRODUCTION	237
II.	EFFECTS OF IMPURITIES ON THE LOW-FREQUENCY INTERNAL	
	FRICTION	238
III.	HIGH-FREQUENCY ATTENUATION IN GERMANIUM, QUARTZ, AND	
	SILICON	248
IV.	EVALUATION OF ACOUSTIC ATTENUATION DUE TO PHONON-	
	PHONON INTERACTIONS FROM THIRD-ORDER ELASTIC MODULI	253
V.	COMPARISON OF EXPERIMENTAL RESULTS WITH THEORETICAL	
	Results	268
VI.	Effects of Phonon Processes on the Drag Coefficients of	
	DISLOCATIONS	274
	References	284

7

Attenuation of Elastic Waves in the Earth

L. KNOPOFF

I. INTRODUCTION	287
II. LABORATORY OBSERVATIONS OF ATTENUATION	289
III. Models of Loss for Constant Q	296
IV. ATTENUATION OF SEISMIC WAVES	304
V. Assumptions Used in Interpretation	311
VI. INTERPRETATION	318
References	322
Author Index	325
SUBJECT INDEX	331