Contents

Preface

Chapter 1. Physical principles of electron bombardment conductivity (EBC)

- I. Historical background, 1
- II. Energy levels in solids, 5
 - A. Crystalline solids, 5
 - B. Amorphous solids, 9
 - C. Localized energy states, 11
- III. Conduction of electricity through insulators, 17
 - A. Conduction of electricity through gases, 17
 - B. Transport of electrons and holes through crystals, 20
 - C. Transport of electrons and holes through amorphous solids and low mobility crystals, 24
 - D. Drift experiments in gases or in insulating solids and liquids, 32

Chapter 2. Properties of electron beams and their interaction with matter

- I. Sources of electrons, 34
 - A. Radioactive sources, 34
 - B. Electron guns for EBC measurements, 34
 - C. EHT supplies, 41
 - D. Concentration of intensity with electron lenses, 41
 - E. Transmission of control, 42
 - F. The scanning electron microscope (SEM), 43
- II. Path length and energy loss of fast electrons, 43
 - A. Cloud chamber tracks, 44
 - B. Thomson-Whiddington-Bethe law of energy losses, 44
 - C. The problem of penetration, 49
 - D. Experimental measurements using phosphorescence glows, 54
 - E. Scaling of variously defined ranges, 59
 - F. Range-energy tables, 60
 - G. Range measurements on primary electrons of energy below about 10 keV, 61
- III. Ionizing radiation and radiation effects, 65
 - A. Production of electron-hole pairs, 65
 - B. Luminescence, 67

- C. Photoconduction, 67
- D. Photovoltaic effect, 70
- E. Radiation damage, 71
- F. Cosmic rays, 75
- G. Nuclear radiation, 77
- H. Persistent polarization, 78

Chapter 3. Steady state EBC of thin insulating films

- I. Preparation of films, 80
 - A. Evaporation, 80
 - B. Sputtering, 81
 - C. Glassy bubbles, 81
 - D. Deposition by glow discharge, 82
 - E. Anodizing and chemical deposition, 83
 - F. Other methods, 84
- II. Specimens for measurements, 84
 - A. Solid electrodes, 86
 - B. Electron beam contacts, 86
- III. Transfer of excitation, 89
 - A. X-rays, 89
 - B. Excitons, 90
 - C. Fluorescence, 91
- IV. Conductivity induced by electrons, 92
 - A. Influence of bombarding voltage, 93
 - B. Gain, 103
 - C. Lateral induced conductivity, 114
 - D. The influence of contacts in normal EBC, 121

Chapter 4. The electron voltaic effect (EVE)

- I. Semiconductor junctions, 123
 - A. Point contacts, 125
 - B. Schottky barriers, 125
 - C. p-n junctions, 128
- II. Practical junctions, 129
 - A. Theory of the EVE, 129
 - B. Diffusion length of conduction electrons in silicon solar cells, 132
- III. Particular semiconductor junctions, 133
 - A. Selenium, 133
 - B. Gallium arsenide, 135
 - C. Silicon, 135
 - D. EBC avalanche effect, 137

Chapter 5. Transient EBC time-of-flight measurements

- I. Time-of-flight technique, 141
 - A. Background of similar work prior to 1957, 142
 - B. Measurements on a crystal in its virgin state, 143
 - C. Types of transient EBC measurements, 144
 - D. Comparison with light-flash or α -particle excitation, 158
 - E. Insulators having a short carrier free lifetime, 160
 - F. Semiconductors having a short dielectric relaxation time, 161
 - G. Signal averaging, 164
- II. Transient EBC methods for measurements other than drift velocity, 165
 - A. Transient EBC pulse shape near t = 0, 165
 - B. Electric field profiles, 166
 - C. Carrier recombination, 166
 - D. Mean free carrier lifetime, 168
 - E. Amorphous semiconductors and the continuous time random walk, 170
 - F. Trap distributions, 173
 - G. Carrier release time from traps, 175
- III. Carrier velocity, 177
 - A. Mobility of either sign of carrier, 177
 - B. Trap-controlled mobility, 180
 - C. Trap density, 181
 - D. The motile trap model, 182
- IV. Apparatus, 183
 - A. Medium and low mobility insulating solids and liquids, 183
 - B. Solid gases, 186
 - C. High mobility solids, 188
 - D. Microwave time-of-flight technique, 192

Chapter 6. Specific materials properties determined by transient EBC techniques

- I. Group IV elemental semiconductors, 196
 - A. Silicon, 196
 - B. Germanium, 201
 - C. Diamond, 206
- II. Amorphous silicon, 208
- III. III-V intermetallic compound semiconductors, 222
 - A. Gallium arsenide, 223
 - B. Indium antimonide, 226
- IV. II-VI compounds, 228
 - A. Cadmium sulphide, 228

- B. Cadmium telluride, 235
- C. Other II-VI solids, 241
- V. Solid and liquid gases, 244
 - A. Noble gases (neon, argon, krypton, and xenon), 244
 - B. Molecular gases (nitrogen, oxygen, carbon monoxide, hydrogen, and methane), 250
- VI. Selenium and sulphur, 254
 - A. Selenium, 254
 - B. Sulphur, 256

Chapter 7. Applications of EBC and EVE in electron devices

- I. Devices using semiconductor junctions, 265
 - A. Photosil EVE hybrid multiplier photocell, 265
 - B. Digicon multichannel photocell, 269
 - C. Intensified charge coupled devices (ICCD) and self-scanned arrays, 274
 - D. Silicon intensifier target (SIT) television pickup tube and SIT scan converter, 279
 - E. Evoscope fixed pattern generator, 284
 - F. Electron bombarded semiconductor (EBS) microwave devices, 285
 - G. Degradation phenomena, 291
- II. Miscellaneous applications of bombarded semiconductor targets, 294
 - A. Barrier EVE and the scanning electron microscope, 294
 - B. Nuclear radiation detectors, 305
- III. EBC of insulating films in electron devices, 311
 - A. Ebicon (Ebitron, Uvicon) television pickup tube, 311
 - B. Computer mass memory (Beamos, Ebam), 313
 - C. Graphechon scan converter, 317

Appendix

- I. Two-layer dielectric, 321
- II. Secondary emission of insulators, 322
- III. Optimum scanning speed for constant charge imaging device, 323
- IV. Ramo's theorem, 325

References, 327

Index, 340