目 次

第1章 超LSI時代のシリコンとダイオード

1	エレクトロニクス~超LSI時代の技術水準	~ 3
2	半導体: シリコン (Si)	4
3	周期的な格子の場と電子	5
4	価電子帯の電子	6
5	導体·半導体·絶縁体:正孔	7
6	ドナー:n形不純物原子	8
7	アクセプタ:p形不純物原子	9
8	オームの法則にしたがう電流	10
9 .	pn 判別法 ······	11
10	. 電気的に活性な不純物原子と不活性な不純物原子	12
11	多数キャリアと少数キャリア	13
12	4 探針法と抵抗率	14
13	キャリアの移動度	16
14	熱い電子	18
15	ブラッグ反射と禁止帯	19
16	状態密度	20
17	真性半導体のキャリア濃度	21
18	真性シリコンの真性キャリア・	22
19	n形 Si の多数キャリア,少数キャリア	24
20	p形 Si の多数キャリア,少数キャリア	26

21	フェルミ準位とキャリア濃度	
22	pn接合の形成	
23	フェルミ・エネルギーとキャリア密度	32
24	pn接合形成のモデルと実際	33
25	pn接合のエネルギー帯構造	34
26	拡散電流	36
27	pn接合の順方向電流と逆方向電流	38
28	pn接合における少数キャリアの注入	40
29	pn接合の電圧電流特性	42
30	キャリアの拡散,拡散距離,拡散方程式	43
31	再結合とライフ・タイム	44
32	Si pn接合における生成再結合電流	45
33	アインシュタインの関係式	46
34	pn接合の電圧電流特性のグラフ	48
35	熱平衡状態における pn接合のエネルギー帯	50
36	pn接合の順方向電流の流れ	52
37	pn接合の雪崩(なだれ)崩壊	54
38	メサ形ダイオード	56
39	プレーナ・ダイオード	58
40	カーブ・トレーサでみたダイオードの特性	60
41	カーブ・トレーサでみたプレーナ・ダイオードのウォーク・アウト …	62
42	ボロン・ガラスで保護したダイオードの逆方向特性	64
43	SiO₂を通して硼素をプレーナ拡散したダイオードの逆方向特性	66
44	接合面積の異なるプレーナ・ダイオードの逆方向特性	68
45	半導体デバイスの周波数限界	70
46	電流利得 a	71
47	增幅素子	72

48	トランジスタ作用の原理	74
49	トランジスタの接地回路	76
第	2章 超LSI時代のシリコン・ウエハ・プロセ	ス
	u u	
50	Paratri,	80
51	computer on a slice	82
52		83
53	Si ウエハの鏡面仕上げ	84
54		85
55		86
56	-; · · · · · · · · · · · · · · · · · · ·	87
57	- 1,51,5	88
58		90
59	電気炉の石英管の管理	91
60	= , , , , , , , , , , , , , , , , , ,	92
61	Si ウエハの加熱高温酸化	94
62	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	95
63	Si ウェハの結晶欠陥	96
64	ゲッタ処理ずみSi ウエハ	98
65	不純物拡散に関する拡散方程式:補誤差関数分布	100
66	不純物拡散に関する拡散方程式:ガウス分布	102
67	接合深さ xj の測定法:スフェリカル・ドリル	104
68	Si 中における硼素の固溶限	106
69	Si 中における硼素の真性拡散係数	108
70		110
71	固体拡散源BNウエハからの硼素拡散	112

12	DCI3 を用いた側条拡展・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
73	高濃度硼素拡散
74	CVD・BNからの硼素拡散
75	C V D・B NからSiO₂を通した Si への硼素拡散 122
76	表面抵抗と平均の抵抗率
77	硼素拡散におけるシリコン・ボライドの形成 125
78	SiB4層の形成を伴わない硼素拡散 126
79	イオン打込法
80	横方向拡散
81	不純物拡散に伴う残留欠陥 130
82	C V D・SiO ₂ , Si ₃ N ₄ , Al ₂ O ₃ の用途
83	Si ₃ N ₄ 膜のCVD
84	SiO ₂ (PSG, BSG) ØCVD133
85	パッシベーション C V D 膜の抵抗率
86	エリプソメトリによる薄膜の測定 136
87	フォト・レジスト
88	フォト・レジストの選び方・使い方
89	フォト・レジストの種類
90	簡便なフォト・マスク製作法
91	紫外線転写のいろいろな方式142
92	電子ビーム・マスク描画の 2 方式143
93	プラズマ・エッチング、アッシング144
94	Al の真空蒸着法145
95	Alによる相互配線とオーミック・コンタクト146
96	Al のプラズマ・エッチング
97	多層配線の基本構造
98	表面再結合速度とオーミック・コンタクト150
99	I Cの研究と教育のための設備151
100	I Cにおけるプロセスの研究152