CONTENTS

LIST OF SYMBOLS		x
1.	INTRODUCTION	1
	The standard random electrode	1
	Common types of electrode	2
	Current-voltage curve for a redox system	4
	Effect of chemical kinetics	6
	References	7
2.	THE SIMPLE ROTATING DISC ELECTRODE	8
	The hydrodynamics	8
	The basic differential equation for transport	11
	The boundary conditions	12
	The simplifications for a disc electrode	12
	The mathematical solution	13
	References	16
3.	THE COLLECTION EFFICIENCY	17
	The ring-disc electrode	17
	Definition of N_o	18
	Differential equation and boundary conditions	19
	Mathematical solution	20
	Effect of bulk concentration of intermediate	22
	Shielding effect	24
	Current-voltage curve at the ring electrode Numerical method of solution	25 26
	References	28
4.	NON-UNIFORMITY OF CURRENT DISTRIBUTION ON THE	HE DISC
	ELECTRODE	29
	Introduction	29
	Primary current distribution	29
	Effect of charge transfer resistance	30
	Effect of concentration polarization	32

	Condition for uniform current distribution	35
	Experimental tests of non-uniform current distribution	36
	References	37
5.	THE SCHEME OF SQUARES	38
	Introduction	38
	Two-electron reactions	38
	Relative rates of proton and electron transfer	41
	The general scheme of squares	45
	One square	47
	Heterogeneous vs. homogeneous proton transfer	49
	Shift in mechanism with potential	54
	Shift in mechanism with pH	56
	Three-unit square	61
	References	72
6.	ELECTRODE KINETICS	73
	Introduction	73
	The Ivanov-Levich equation	73
	Split-ring electrode	76
	The copper system	78
	The indium system	83
	The oxygen reaction	84
	Reduction of nitro benzene	92
	Conclusions	97
	References	97
7.	TITRATION CURVES	99
	Description of titration curve	99
	Calculation of titration curve	100
	Analysis of experimental results	103
	References	108
8.	HOMOGENEOUS KINETICS - SECOND ORDER	109
	Introduction	109
	Qualitative description	109
	Mathematical theory	110
	The reaction between bromine and allyl alcohol	113
	Numerical calculations	118
	The reaction between Br ₂ and As(III)	119
	References	121
9.	HOMOGENEOUS KINETICS - FIRST ORDER	122
	Introduction	122

Mathematical theory	122
Numerical calculations	126
Experimental results	127
Diffusion coefficients	130
The range of measurable rate constants	132
References	133
10. TRANSIENT CURRENTS	134
Introduction	134
Ring transient for galvanostatic step at the disc	136
The Laplace technique	142
Potential step at the disc	146
Adsorption, double-layer charging, and other effects	149
Integration of transients	151
Alternating current transients	153
References	155
APPENDIX 1. Values of $F(\theta)$, $G(\phi)$, and N_{0}	156
APPENDIX 2. Linked chemical equilibria	158
APPENDIX 3. Heterogeneous vs. homogeneous proton transfer	164
APPENDIX 4. Expressions for T_2 in eqn (9.8)	166
APPENDIX 5. Values of a , b , and c in eqn (9.10)	167
INDEX	171