MICROWAVE ENGINEERS' HANDBOOK

VOLUME 1

CONTENTS

TRANSMISSION LINE THEORY	1
WAVEGUIDES	19
COAXIAL LINES	93
STRIP TRANSMISSION LINES	115
FILTERS AND CAVITIES	153

TRANSMISSION LINE THEORY

Summary of Transmission Line Equations	2
Some Miscellaneous Relations in Low Loss	
Transmission Lines	3
Matrix Analysis	4
VSWR and Related Parameters	5-7
Normalized Susceptance vs. VSWR	8
Normalized Susceptance vs. VSWR Expanded	8
Maximum and Minimum Resultant VSWR from	
two Mismatches	9
VSWR and □ Calculation Nomograph	10
Nomogram of Mismatch Error Limits	11
Reduction of VSWR by Matched Attenuator	12
Loss in Output When Generator and/or Load is	
Mismatched to Interconnecting Line	13
Capacitance vs. VSWR Chart	14
Nomograph for Attenuation in Dielectric #1	15
Nomograph for Attenuation in Dielectric #2	16
Design of Two Section λ/4 Matching Transformers	
With Chebyshev Response	17
$ \Gamma $ vs. Length of Taper in Wavelengths from Z_R to	
Z _O	18
Bandwidth as a Function of Normalized Load Im-	
pedance with Maximum VSWR's for Two Sec-	
tion Quarterwave Matching Transformers	18

TM Modes in Rectangular Waveguide	21	0: 1.0:1.19	
TE Modes in Rectangular Waveguide	21	Single Ridge Waveguide TE ₁₀ Mode Cutoff	~-
	22	Wavelength $b/a = 0.45$	87
TM Modes in Circular Waveguide		Double Ridge Waveguide Bandwidth Curves b/a = 0.5	88
TE Modes in Circular Waveguide	22	Single Ridge Waveguide Bandwidth Curves b/a = 0.45	88
TM Modes in Coaxial Waveguide	23	Single Ridge Waveguide Correction Curves for	
TE Modes in Coaxial Waveguide	23	Non-Standard b/a Ratio	89
Waveguides of More General Cross Section		Single Ridge Waveguide Relative Admittance TE ₁₀	
(Ridge Waveguide)	24	Mode $b/a = 0.45$	89
Waveguides of More General Cross Section		Cross-Sections of Ridge Guides	90
(Lunar Waveguide)	25	E.I.A. Proposed Standard Double Ridged Waveguide	
Four Waveguide Cross Sections with Their Approx-		3.6:1 Bandwidth	91
imate Cutoff-Wavelength Formulas	26	E.I.A. Proposed Standard Single Ridged Waveguide	
Construct that the A let	26	3.6:1 Bandwidth	91
Attenuation vs. Frequency	20	E.I.A. Proposed Standard Double Ridged Waveguide	
Waveguides of More General Cross Section		2.4:1 Bandwidth	92
(Hexagonal Guide)	26	E.I.A. Proposed Standard Single Ridged Waveguide	
Dispersion Characteristics	27	2.4:1 Bandwidth	92
Calculated Attenuation of Rectangular Rigid			
Waveguides Inside Dimensions Ratio 2:1	28	*	
Average Power vs. Temperature Rise for Rigid			
Waveguide	29		
Theoretical Curves of the Average Power Rating			
for Copper Rectangular Waveguide (42.4°C)	30		
Theoretical Curves of the Average Power Rating			
for Copper Rectangular Waveguide (110°C)	30		
Variation of Peak Power Rating with Absolute			
Pressure	31		

WAVEGUIDES

Chart of Pulse-Power Capacity of Waveguide	31
Waveguide Deflection vs. Pressure	32
Stress in Pressurized Waveguide	33
Cutoff Wavelength in Circular Waveguide	34
Attenuation of a Round Copper Pipe with 5 cm	
Radius for Three Important Modes	35
Reference Table of Rigid Rectangular Waveguide	
Data and Fittings	36
Waveguide Multiplication Scaling Factors	37
Tables of Constants for Rectangular Waveguides 38	-71
Commonly Used Waveguide Calculations	72
Radial Line Choke Design Charts	73
Resonant Buildup in Ring Circuit	74
Impedance of Capacitive Screw in RG 52/U Waveguide	75
Susceptance for Single Post in Waveguide (λg/a = 1.4,	
$\lambda g/a = 1.6$)	76
Susceptance for Single Post in Waveguide ($\lambda g/a = 2.0$,	77
$\lambda g/a = 2.4$) Susceptance for Single Post in Waveguide ($\lambda g/a = 2.8$)	78
Susceptance for Post Doublet in Waveguide (Agra - 2.6)	70
(λα/a = 1.2)	78
Susceptance for Post Doublet in Waveguide (λg/a = 1.6,	
$\lambda g/a = 2.0$	79
Susceptance for Post Doublet in Waveguide (\lambdag/a = 2.4,	
$\lambda g/a = 2.8$)	80
Susceptance of Asymmetrical Iris in Waveguide	81
Susceptance of Two Symmetrical Irises in Waveguide	82
Susceptance of Symmetrical Irises in Waveguide	82
Susceptance of Hole in Iris in Waveguide	83
Susceptance of Hole in Iris in Waveguide	84
Susceptance of Capacitive Irises in Waveguide	85
Susceptance of Centered Thin Vane in Waveguide	85
Normalized Capacitive Susceptance vs. Normalized	
Iris Size	86
Normalized Inductive Susceptance vs. Normalized	
Iris Size	86
Double Ridge Waveguide TE ₁₀ Mode Cutoff	
Wavelength b/a = 0.5	87

COAXIAL LINES

Characteristic Impedance of Coaxial Lines	95	Coax
Inductance and Capacitance of Coaxial Lines	96	Co
Characteristic Impedance of Square Outer and Round		Coaxi
Inner Conductors	97	Co
Characteristic Impedance (Zo) of Round Wire in		Diaph
Square Outer Conductor	98	Diele
Characteristic Impedance of Rectangular Coaxial		Desig
Transmission Lines	98	Lir
The Effect of Diametrical Tolerances of the Impedance		Design
of 50 Ohm Coaxial Line	99	Lir
SWR vs. % Displacement from Center of the Center		Respo
Conductor of a 50 Ohm Coaxial Transmission Line	99	Wi
The Low Frequency Reactance of Metal Posts		Frequ
Mounted Across Coaxial Lines	99	Lir
Characteristic Impedance, Capacitance and Inductance		
of Coaxial Lines 100	-102	
Attenuation and Power Rating of Standard Rigid		
Transmission Lines	103	
Power and Attenuation of Flexible 50 Ohm RF		
Coaxial Polyethylene Cables	104	
Attenuation and Power Rating of Heliax [®] Coaxial		
Cables	105	
50 Ohm Styroflex® Cable Attenuation vs. Frequency	106	
Temperature Correction Factor Attenuation of		
Styroflex [®] Cab <u>l</u> e	106	
50 Ohm Styroflex® Cable Average Power Rating in		
Air at 40°C	107	
Power Rating vs. Ambient Temperature	107	
RF Voltage Breakdown in 50 Ohm Air Filled Coaxial		
Line	108	
Interface Dimensions of Type N Connectors	109	
	# FE =	
Interface Compatibility of Type N Connectors	110	

Coaxial Discontinuity Capacity Step on Inner	
Conductor	111
Coaxial Discontinuity Capacity Step on Outer	
Conductor	111
Diaphragm Discontinuities in Coaxial Lines	112
Dielectric Discontinuities in Coaxial Lines	112
Design and Performance Data for Dielectric Coaxial	
Line Support	113
Design Chart for Quarter-Wave Stubs in Coaxial	
Line	114
Response Curves for Coaxial Transmission Line	
With Choke Couplings	115
Frequency Bandwidth Curve of Coaxial Transmission	
Line with Choke Couplings	115

Graph of $\sqrt{\epsilon_r}$ Zo vs. W/b for Various Values of t/b t/b vs. W/b with $\sqrt{\epsilon_r}$ Zo Ω as a Parameter	117 118	Critical Wavelengths of H-Modes (TE-Modes) in Strip Lines With Square Outer Conductor	146
Theoretical Q of Copper-Shielded Strip Line in a Dielectric Medium	118	Critical Wavelengths of H-Modes (TE-Modes) in Strip Lines With Rectangular Outer Conductor	146
Equivalence Between Conductors of Rectangular	110	Critical Wavelengths of E-Modes (TM-Modes) in Strip	140
and Circular Cross Sections	119	Lines With Rectangular Outer Conductor	146
Expanded Scale	119	Strip Transmission Line Mode Charts	147
Theoretical Breakdown Power of Air-Dielectric	110	Odd and Even Impedance of Coupled Transmission	177
Rounded Strip Transmission Line	120	Lines	148
Theoretical Attenuation of Copper Shielded Strip		Microstrip Coupler w/h vs. s/h	149
Line in a Dielectric Medium	120	Microstrip Coupling, Coupling vs. s/h	149
Measured Microstrip Line Impedance and Propagation	11-1-1	Microstrip Even Impedance	150
Constant vs. Strip Width	121	Microstrip Odd Impedance	150
Microwave Printed Circuits MPC	122	Characteristic Impedance of Dielectric Supported	
Strip Width vs. Line Impedance for MPC-062-2	123	Strip Transmission Line	151
Strip Width vs. Line Impedance for MPC-125-2	124	Is A S ONLY ROSESPONDED SON. SCANNOCKO	
Strip Width vs. Line Impedance for MPC-187-2	125		
Strip Width vs. Line Impedance for MPC-250-2	126		
Loss vs. Impedance for MPC	127		
Copper Loss vs. Frequency	128		
Coupling as a Function of Gap Spacing for Lines			
with Characteristic Impedance of 50 Ohms	129		
Coupling Coefficient for a Directional Coupler	130		
Dimensions of Low Pass Filter Using MPC-125	131		
Maximum Operating Frequency of MPC Line			
Without Higher Order Modes	131		
Even and Odd Mode Characteristic Impedance for			
Coupled Microstrip (k = 1, 6, 9, 12)	132		
Even and Odd Mode Characteristic Impedance for			
Coupled Microstrip (k = 16, 30, 80)	133		
Even and Odd Mode Impedance of Parallel Slab Line	404		
Configuration	134		
Normalized Conductor Loss as Function of Geometry	125		
w/h and e/r (MKS units)	135		
Line-Width Correction for Finite-Thickness Center	135		
Conductors	130		

STRIP TRANSMISSION LINES

Ratio of Free Space Wavelength (λο) to Microstrip	
Wavelength (\lambda m) Calculated from Work of Wheeler	
(Wide and Narrow Strips)	136
Microstrip Characteristic Impedance Calculated from	
Work of Wheeler	137
Gap in Strip Line 50 Ohm Line Centerline	
Representation	138
Gap in Strip Line 50 Ohm Line Edge Representation	138
Round Hole in Strip Line 50 Ohm Line Centerline	
Representation	139
Round Hole in Strip Line 50 Ohm Line Edge	
Representation	139
Microstrip Impedance vs. Line Width 140	-142
Impedance of Microstrip (Ω)	142
Relative Velocity β/β_0 vs. w/b	142
Loss vs. w/b Ratio	143
Reference Plane Location for "T" and "+" Junction	143
Gap Capacitance vs. Gap Spacing	144
Junction Effect at "T" and "X"	144
End Effect for Microstrip Line	144
Characteristic Impedance of Strip-Lines	145
Attenuation Constant of the Fundamental TE-Mode	
(σ = Wall Conductivity in Mho/cm, λo = Wavelength	
in Free Space) in Stripline With Rectangular Outer	
Conductor	145
Critical Wavelengths of E-Modes (TM-Modes) in	
Strip Lines with Square Outer Conductor	145

Microwave Filters	154-162
1. Commensurate Linelength TEM Filters	154-158
II. Semi-Lumped Element Filters	158-159
III. Waveguide and Cavity Filters	159
IV. Diplexers and Multiplexers	159-161
References	162
Filter Design	163-168
Length of Kth Resonator in Direct-Coupled	
Resonator Filters	169
Unified Filter Design Charts - Stopband Insertion	
Loss of Normalized Chebyshev Lowpass	
Prototype Filters	170-171
Phase Response of Filters with Maximally Flat	
Amplitude Response	172
Normalized Delay Variation $ au'(\omega') au'$ o of Lowpass	
Prototype Filter with Maximally Flat Amplitude	
Response	173
Narrowband Butterworth Bandpass Filter Selectivity	
Characteristics	174
Narrowband Chebyshev Bandpass Filter Selectivity	
Characteristics	175
Table of Ripple Factor and VSWR	176
Elliptic Function Selectivity CHart	176
Midband Dissipation Loss for Narrow Band Filters	177

FILTERS AND CAVITIES

Fringing Capacitance for Tightly Coupled Rectangul	ar
Bars	178
Relationships Between Network Parameters	179
Resonant Wavelength and Q of:	
1. Right Circular Cylinder Resonant Cavity	180
2. Coaxial TEM Mode Cylinders	180
3. Rectangular Prism Resonant Cavity	180
Mode Chart for Right Circular Cylinder	181
Mode Lattice for Cylinder Resonators	182
Mode Lattice for Square Prism Resonators	183
Nomogram for Coaxial Resonators	184
Effect of Humidity on the Resonant Frequency	
of a Cavity Resonator	185
Unloaded Q(Qu) vs. Frequency for Various	
Resonators	186
Dissipation in a Transmission Cavity vs. Ratio of	
Loaded to Unloaded Q	186
Rejection vs. δf/△f	187
Resonant Wavelength of Re-Entrant Coaxial Cavity	188-192