.

Contents

1	Uni	form	Modes of the Eq	uation	of Mo	tion of	f the N	Magne	tizatio	n Vec	tor
	1-1	Equ	ation of motion	of the	magne	etizati	on ve	ctor			1
	1-2	Sus	ceptibility tensor	in infu	nite m	edium	ı.			•	3
	1-3	Dar	nping .		•					•	5
	1-4	The	linewidth of ferr	ites			•			•	8
	1-5	Scal	lar Susceptibility								9
	1-6	Ten	sor permeability			•					11
	1-7	Scal	lar permeability			•				•	11
	1-8	Sus	ceptibility tensor	in ellip	osoida	l med	ium	•			12
	1-9	Exte	ernal diagonal su	sceptib	oility f	or elli	psoid		•		16
	1-10	Cry	stalline anisotrop	y -		•	•			•	18
	1-11	Lov	v field losses in u	nsatura	ted m	nedium	n		•		24
	1-12	Lov	v frequency limit	of resc	onance	e in sa	turate	ed med	lium		26
-		1		F	- 41		tion				
2	Hig	gner (Jraer Modes of t	ne r.qu	ation	01 110	tion				
	2-1	Spir	nwaves .	•		•		•	•	•	30
	2-	1-1	Exchange field	•	•		•		·		30
	2-	1-2	Dipolar field	•	•	•	•		•	•	33
	2-	1-3	Spinwave modes	in isoti	ropic e	ellipso	id	•	•		34
	2-	1-4	Spinwave modes	in anis	otropi	ic ellip	soid	•	•		36
	2-	1-5	Linewidth broad	ening b	y dege	enerat	e spin	waves	•	•	39
	2-	1-6	Microwave varia	ble del	ay usi	ng spi	nwave	25	·		40
	2-2	Ma	gnetostatic mode	s.	•		•	•			43
	2-2	2-1	The characterist	ic equa	tion o	f the n	nagne	tostati	c mod	es	44
	2-2	2-2	The field configu	rations	of the	e magr	netost	atic m	odes		49
2	Car	ida T	outsubation Theo	m and	Moor						
3	Cav		erturbation Theo	ry anu	Ivicas	ureme					
	3-1	Cav	ity perturbation	theory	•	•	•	·	•	•	52
	3-2	No	n-degenerate cavi	ty	٠	·	•	•	•	•	53
	3-3	Deg	generate cavity	•	•	•	•	•	•	•	55
	3-4 Physical interpretation of resonance measurements.							•	57		
	3-	4-1	Gyromagnetic ra	tio	•	·	•	•	•	•	57
	3-	4-2	Anisotropy const	ants	•	•	•	•	•	•	57
	3-	4-3	Uniform mode el	lipticit	y		•	•	×		59

.

3-4-4	Saturation magnet	izatio	n.					59
3-4-5	Linewidth .						•	60
3-4-6	Peak magnetic field	d in re	ectangu	lar wa	veguide	cavity	•	61
3-4-7	Q Measurements .		• •	•	,		•	62
Non-lin	ear Theory							
1	11							

	4-1	Non-linear limiting	•	•	66
	4-	1-1 Non-linear equation of motion in isotropic ellip.	soid		68
	4-	1-2 First-order spinwave instability			69
	4-	1-3 Subsidiary resonance below the main resonance			71
	4-	1-4 Coincidence of subsidiary and main resonances			72
	4-	1-5 Second-order spinwave instability			74
	4-	1-6 Spinwave instability in an r.f. magnetic field pa	rallel	to	
		the d.c. magnetic field			75
	4-	1-7 The steady state susceptibility above the inst	stabili	ity	
		threshold under condition of subsidiary absor	otion		78
	4-	1-8 First-order spinwave instability in anisotropic e	ellipso	oid	
		under perpendicular pumping	•		80
	4-	1-9 Spinwave instability in anisotropic ellipsoia	! una	er	
		parallel pumping	•	•	87
	4-2	The ferrimagnetic amplifier	•		87
	4-2	2-1 Instability threshold of magnetostatic amplifier			90
	4-2	2-2 Steady state solution of magnetostatic amplifier		•	93
	4-2	2-3 Effect of spinwave pumping	•	•	94
	4-3	Frequency doubling in ferrites	•	•	95
5	Infi	nite Ferrite Medium			
	5-1	Propagation in infinite isotropic ferrite medium		•	101
	5-2	Faraday rotation			104
	5-3	Coupled wave description of Faraday rotation			107
	5-4	Propagation in infinite anisotropic ferrite medium	•	•	107
6	Pro	pagation in Cylindrical Waveguides			
	6-1	Derivation of the wave equations.		•	111
	6-2	The field equations			114
	6-3	The characteristic equation for the partly-filled gu	ide	•	116
	6-4	Discussion of propagation constants .			117
	6-5	Discussion of the field components .	•		122
	6-6	Perturbation theory		•	127
	6-7	Faraday rotation isolator			131

4

С	onten	ts		xv
	6-8	4-port Faraday rotator circulator		132
	6-9	Non-reciprocal Faraday rotation type phase shifter		133
_	P			
7	Pro	pagation in Ferrite Loaded Rectangular Waveguide		
	7-1	Derivation of the wave equation	•	136
	7-2	The field equations	•	138
	7-3	The Transcendental equation for the propagation co	n-	
		stants	•	139
	7-4	Discussion	•	140
	7-5	The twin slab symmetrical non-reciprocal phase shifter		142
	7-6	Differential phase shift circulator	•	146
	7-7	Perturbation theory in lossy rectangular waveguide	÷	146
	7-7	7-1 Perturbation theory of non-reciprocal rectangular wav	e-	
		guide phase shifter		148
	7-7	7-2 Perturbation theory of the rectangular waveguid	de	
		resonance isolator	•	148
	7-8	Dielectric loading	•	151
_				
8	The	Junction Circulator		
	8-1	The scattering matrix theory of the junction circulator	•	155
	8-1	-1 The eigenvalues of the junction circulator	•	157
	8-1	-2 Circulation adjustment	•	159
	8-2	Field theory of the ferrite junction circulator .	٠	160
	8-2	2-1 The stripline junction circulator	•	161
	8-2	2-2 The waveguide junction	٠	167
	8-3	The circuit theory of the junction circulator	•	168
	8-3	8-1 Normal mode description of shunt resonator .	•	170
	8-3	3-2 Circulation adjustment		173
	8-3	B-3 Bandwidth of direct coupled circulator		175
	8-3	B-4 Broadband matching using equal cavity networks	•	176
	8-3	3-5 Quarter wave coupled junction		178
	8-3	B-6 Fundamental limits on external matching .		180
	8-4	Lumped element junction circulator		181
	8-5	Adjustment of the 4-port single junction circulator.		184
	8-5	5-1 Phenomenological description		184
	8-5	5-2 The scattering matrix		185
	8-5	5-3 The circulation adjustment		187
	1	8-5-3-1 Adjustment of s_{-1} and s_1 eigenvalues .	•	188
	1	8-5-3-2 Adjustment of s_0 eigenvalue		188
	8	8-5-3-3 Splitting of degenerate s_1 and s_{-1} eigenvalues		188
	8-6	Adjustment of the <i>n</i> -port single junction circulator.		190

С	on	te	n	ts
-			•••	•••

9 Coupled Wave Theory of Ferrite Devices	
9-1 Coupled waveguides with unequal propagation constants	193
9-1-1 Coupled waveguides with non-reciprocal phase shift	196
9-1-2 Coupled waveguides with non-reciprocal attenuation .	198
9-2 Non-reciprocal coupling using ferrites .	200
9-2-1 The elliptical Faraday rotator	203
9-2-2 Reciprocal rectangular waveguide ferrite amplitude modulator	206
9-3 Single mode longitudinally magnetized rectangular wave-	200
guide ferrite devices	200
9-3-1 Reciprocal ferrite phase shifter	209
9-3-2 The tetrahedral junction	211
10 Magnetically Tunchle Microwaya Filters Using Single C	netol
Vitrium-Iron-Cornet Resonators	ystai
10.1. Magnetically typeble bandress filters	214
10-1 Magnetically tunable band stan filters	214
10-2 Magnetically tunable directional filters	221
10-5 Magnetically tunable directional inters.	224
10.4 Tunchic filter limiters	228
10-4 Tunaole Inter Ininters.	231
11 Microwave Switching using Ferrite Devices	
11-1 Shielding effect of round and rectangular waveguides .	237
11-1-1 Thin waveguide of infinite length in a longitudinal field	237
11-1-2 Frequency and time responses	239
11-1-3 Response in frequency domain when external field is	
applied through a long solenoid connected to a	
constant current generator	240
11-1-4 Response in time domain when external field is applied	
through a long solenoid	242
11-2 Switching time of ferrites with rectangular hysteresis loop	245
11-3 Switching speed and power	249
Subject Index	253

xvi