Contents

CHAPTER 1 FILTERS IN ELECTRONICS		1
1.1	Types of Filters	1
1.2	Filter Applications	3
1.3	All-Pass Filters	5
1.4	Properties of Lattice Filters	6
1.5	Filter Building Blocks	9
1.6	Higher Order Filters	17
1.7	Coil-Saving Bandpass Filters	17
1.8	Frequency Range of Applications	20
1.9	Physical Elements of the Filter	21
1.10		22
1.11	RC Passive and Active Filters	22
1.12	Microwave Filters	25
1.13	Parametric Filters	29
CHAPTER	2 THEORY OF EFFECTIVE PARAMETERS	31
2.1	Power Balance	32
2.2	Types of General Network Equations	33
2.3	Effective Attenuation	35
2.4	Reflective (Echo) Attenuation	36
2.5	Transmission Function As a Function Of Frequency Parameter, s	37
2.6	Polynomials of Transmission and Filtering Functions	38
2.7	Filter Networks	39
2.8	Voltage and Current Sources	41
2.9	The Function $D(s)$ As An Approximation Function	42
2.10	Examples of Transmission Function Approximation	45
2.11	Simplest Polynomial Filters in Algebraic Form	49
2.12	Introduction To Image-Parameter Theory	50
2.12	Bridge Networks	52
2.14	_	53
2.15		54
2.16	The Smallest Realizable Networks	55
2.17		57
2.17	Fifth-Order Networks	58
2.10	Tim-Order Networks	38
CHAPTER	3 FILTER CHARACTERISTICS IN THE FREQUENCY DOMAIN	60
3.1	Amplitude Responses	60
3.2	Phase-and Group-Delay Responses	61
3.3	Group Delay of an Idealized Filter	61
3.4	Group-Delay-Attenuation Relationship	61
3.5	The Chebyshev Family of Response Characteristics	62

x	Contents	
---	----------	--

3.6	Gaussian Family of Response Characteristics	67
3.7	A Filter with Transitional Magnitude Characteristics	74
3.8	Legendre Filters	74
3.9	Minimum-Loss Characteristics	76
3.10		76
3.11		77
3.12		78
3.13		80
3.14		81
	• •	
CHAPTER	4 ELLIPTIC FUNCTIONS AND ELEMENTS OF REALIZATION	107
4.1	Double Periodic Elliptic Functions	107
4.2	Mapping of s-Plane into u-Plane	109
4.3	First Basic Transformation of Elliptic Functions	110
4.4	Filtering Function in z-Plane	112
4.5	Graphical Representation of Parameters	114
4.6	Characteristic Values of $D(s)$	115
4.7	An Example of Filter Design	116
4.8	Consideration of Losses	119
4.9	Introduction of Losses by Frequency Transformation	119
4.10	Highpass Filters with Losses	120
4.11	Transmission Functions with Losses	121
4.12	Conclusions on Consideration of Losses	123
4.13	Realization Process	124
4.14	Bandpass Filter with a Minimum Number of Inductors	125
4.15	The Elements of a Coil-Saving Network	127
4.16		128
	Realization Procedure	129
	Numerical Example of Realization	131
4.19	Full and Partial Removal for a Fifth-Order Filter	132
CHAPTER	5 THE CATALOG OF NORMALIZED LOWPASS FILTERS	137
5.1	Introduction to the Catalog	137
5.2	Real Part of the Driving Point Impedance	146
5.3	Lowpass Filter Design	148
5.4	Design of Highpass Filters	151
5.5	Design of LC Bandpass Filters	154
5.6	Design of Narrowband Crystal Filters	160
5.7	Design of Bandstop Filters	163
5.8	Catalog of Normalized Lowpass Models	168
CHAPTER	6 DESIGN TECHNIQUES FOR POLYNOMIAL FILTERS	290
	Introduction to Tables of Normalized Element Values	290
6.1 6.2		292
6.2	Lowpass Design Examples Randpass Filter Design	295
6.3 6.4	Bandpass Filter Design	296
6.5	Concept of Coupling Coupled Resonators	298
6.6	Second-Order Bandpass Filter	300
6.7	Design with Tables of Predistorted k and q Parameters	305

		Contents
6.8	Design Examples using Tables of k and q Values	306
6.9	Tables of Lowpass Element Values	310
6.10	Tables of 3-dB Down k and q Values	311
CHAPTER	7 FILTER CHARACTERISTICS IN THE TIME DOMAIN	380
7.1	Introduction to Transient Characteristics	380
7.2	Time and Frequency Domains	380
7.3	Information Contained in the Impulse Response	383
7.4	Step Response	383
7.5	Impulse Response of an Ideal Gaussian Filter	384
7.6	Residue Determination	385
7.7	Numerical Example	385
7.8	Practical Steps in the Inverse Transformation	388
7.9	Inverse Transform of Rational Spectral Functions	389
7.10	Numerical Example	390
7.11	Estimation Theory	391
7.12	Transient Response in Highpass and Bandpass Filters	392
7.13	The Exact Calculation of Transient Phenomena for Highpass Systems	393
7.14	Estimate of Transient Responses in Narrowband Filters	395
7.15	The Exact Transient Calculation in Narrowband Systems	397
7.16	Group Delay Versus Transient Response	398
7.17	Computer Determination of Filter Impulse Response	398
7.18	Transient Response Curves	400
CHAPTER	8 CRYSTAL FILTERS	414
8.1	Introduction	414
8.2	Crystal Structure	414
8.3	Theory of Piezoelectricity	414
8.4	Properties of Piezoelectric Quartz Crystals	415
8.5	Classification of Crystal Filters	421
8.6	Bridge Filters	423
8.7	Limitation of Bridge Crystal Filters	425
8.8	Spurious Response	427
8.9	Circuit Analysis of a Simple Filter	428
8.10	Element Values in Image-Parameter Formulation	429
8.11	Ladder Filters	431
8.12	Effective Attenuation of Simple Filters	434
8.13	Effective Attenuation of Ladder Networks	437
8.14	Ladder Versus Bridge Filters	439
8.15	Practical Differential Transformer for Crystal Filters	440
8.16	Design of Narrowband Filters with the Aid of Lowpass Model	443
8.17	Synthesis of Ladder Single Sideband Filters	453
8.18	The Synthesis of Intermediate Bandpass Filters	483
8.19	Example of Band-Reject Filter	490
8.20	Ladder Filters with Large Bandwidth	491
CHAPTER	9 HELICAL FILTERS	499
9.1	Introduction	499
9.2	Helical Resonators	499

xi

xii	Contents

9.3	Filter with Helical Resonators	505
9.4	Alignment of Helical Filters	513
9.5	Examples of Helical Filtering	518
CHAPTER	10 NETWORK TRANSFORMATIONS	522
10.1	Two-Terminal Network Transformations	522
10.2	Delta-Star Transformation	528
10.3	Use of Transformer in Filter Realization	530
10.4	Norton's Transformation	530
10.5	Applications of Mutual Inductive Coupling	536
10.6	The Realization of LC Filters with Crystal Resonators	540
10.7	Negative and Positive Capacitor Transformation	545
10.8	Bartlett's Bisection Theorem	546
10.9	Cauer's Equivalence	549
10.10	Canonic Bandpass Structures	552
10.11	Bandpass Ladder Filters Having a Canonical Number of Inductors	
	without Mutual Coupling	553
10.12	Impedance and Admittance Inverters	55 9
10.13	Source and Load Transformation	567
BIBLIOGRA	АРНУ	569
INDEX		573