目 次

第1草	でである。 一種実に働かせるために
1.1	回路は果たして働くか1
	実験は成功だが1
	単位回路とシステムの関係2
1.2	確率と歩どまり4
	回路が働く確率4
	複雑さと技術レベル
1.3	確実さを増す手法7
	回路図とその意味7
	再現性を求めて8
	すべて簡単なことばかりだが10
	確実さ 99% への道11
k⊁ Ω ⊐±c	コカレな井の女性
50.0	こ 入力と負荷の条件
$2 \cdot 1$	しきい値と入力信号の条件13
	しきい値のこと13
	しきい値はどこに14
	TTL と C·MOS では ······15
	何の役に立つか17
2.2	ブル・アップ抵抗の効果と副作用18
	立上がりと電力損失18
	ブル・アップ抵抗の使い方19
	アクティブなプル・アップ20
	™ / Ъ , № OD

2.3	ファン・アウトの設計22
	負荷は重すぎないか22
	ローディング・ファクタ23
2.4	ファン・アウトの限界の見わけ方24
	できてしまったものの点検24
	測定器と実技24
	波形の実例と判定25
0	
第3章	
3.1	しきい値の役割27
	感度は高いほどよいか27
	ノイズ・マージンの考え方28
3.2	しきい値の作り方30
	備えるべき条件30
	しきい値を作る方法31
	入力に換算したしきい値33
3.3	しきい値とスナップアクション34
	ヒステリシスの効果34
	可変のスナップ特性を持つ回路 ······36
	スナップ特性をディジタル IC で37
$3 \cdot 4$	ゲートとストローブ38
	差動にしたディジタル信号38
	ストローブの技術39
₩ 1 ≃	ディジタル IC と他の素子との結合
$4 \cdot 1$	トランジスタで IC を動かす41
	トランジスタとディジタル IC
	大振幅の信号を IC へ
	負の信号レベルを IC へ44
1.2	UIT FET リニア IC たゾとの結合44

	UJT の出力を IC に結ぶ44
	FET の出力を IC に結ぶ46
	リニア IC の出力を DTL, TTL へ47
4.3	IC の出力とレベル変換48
	出力の扱いと誤動作48
	パッファの使い方48
	高レベル,負のレベルへの変換49
	任意のレベルへの変換
4.4	IC で他の素子を動かすとき51
	リレーやソレノイド
	サイリスタを IC で動かす52
	ランプやネオン管など
	発光ダイオード54
₩ 5 ₽	€ ディレイ・タイムとその役割
5.1	ディジタル回路とディレイ57
	ロジックは正しいのに57
	ディレイはじゃま物か59
5.2	ディレイ・タイム発生の機構60
	時定数としきい値60
	ディレイの作り方61
	実例とその動作62
	使える範囲を拡大する
	C·MOS で遅らす
5.3	ディレイの耐雑音性と安定度
	"働く"と"使える"
	再現性をそこなう要素
	観測で得られる手掛り69

第6章	〒 ディレイとタイミングの応用	
6.1	動作を確かにするディレイ	73
	パルスの位置の動かし方	73
	耐雑音性を高める	74
6.2	モノステーブル・マルチバイブレータ	75
	雑音がいちばんこわい	75
	IC で合成したモノステーブル	76
	積分形のモノステーブル	78
	正確なモノステーブルが必要なとき	79
	モノステーブルの代わりに	8(
6.3	パルス・オシレータ	84
	簡素な発振器	84
	安定な発振器	85
	トレイン・ゼネレータの手法	86
第7章	i フリップ・フロップの種類と応用	
	フリップ・フロップの基本	87
•	RS ラッチ	
	セット・リセット形	
	Tフリップ・フロップ	
$7 \cdot 2$	同期と非同期	
1 2	クロックの働き	
	同期入力と非同期入力	
	Dフリップ・フロップ	
7.3	JK フリップ・フロップ	
. 0	JK 形の性質	
	JK から他の形へ	
	マスタースレーブ形	
$7 \cdot 4$	フリップ・フロップと誤動作	97

	タイミングが関係する97
	二, 三のヒント
第8章	オペアンプの性能を引き出す
8.1	オペアンプの種類と限界101
	どんな種類があるか101
	どこまで使えるか103
8.2	オフセットとドリフト105
	オフセット電圧の影響105
	オフセット電圧の温度係数106
	オフセット電流の影響107
8.3	外部回路の特性108
	外づけ部品の問題108
	抵抗が気になる110
	信号源インピーダンス113
8.4	オペアンプと電源113
	電源はどこまで安定にすべきか11:
第9章	: 発振の原理と対策
9.1	発振を制御する手がかり115
	くらやみに手さぐり115
	ボーデ線図を書く116
	ボーデ線図の意味するもの118
9.2	ポーデ線図による解析119
	理想的な特性115
	現実の増幅器の特性120
9.3	特性の補正122
	ポールを動かす122
	増幅器の外部の周波数特性12
9.1	

次

	ゼロによる補正120
	でき栄えの試験法127
第 10	章 広帯域,早い立上がりを得るには
10.1	スリューレイトの性質125
	どんなことが起こるか125
	どうして生ずるか13(
	スリューレイトとゲイン13%
$10 \cdot 2$	位相補償と帯域幅133
	発振が止まればよいか133
	セトリングタイムを追う134
10.3	回路設計への応用135
	スリューレイトを大きく使う135
	安定さの点検の方法137
	フィード・フォワードの技法138
10.4	早いオペアンプの扱い方140
	どこまで振れるか140
	その他の不安定要素と対策141
第 11	章 電源の関連する問題
11.1	電源に求めるもの143
	どのような電源が必要か143
	ハムがなければよいか144
	本当に必要な特性は145
	温度による変動146
11.2	オペアンプの電源147
	望ましい安定化電源147
	高安定度が欠かせないとき149
11.3	5Vの電源150
	マージャッ IC の最近

	5V電源の問題点	151
	簡単な 5 V 電源の例	152
11.4	大きなシステムの電源	153
	レギュレータをその場へ	153
	ふわっと安定化した電源	··154
	コレクタ損失を取り出す	…154
** 10 -	The school has seen as a large	
	章 実装の手がかり	
12.1	電流の通路	
	理論どおりに働かない、	
	電流はどこを通るか	
	はじめから終りまで	⋯159
12.2	プリント基板のレイアウト	· 161
	デカップリング	··161
	キャパシタの条件	…162
12.3	電線を引っぱるとき	· 163
	隣りのケーブルのなかは	163
	干渉を防ぐ方法	⋯165
	差動ディジタル伝送	⋯166
12.4	時間を節約するために	· 167
	いつ IC はこわれるか	⋯167
	余った足の扱い方	⋯168
第 13 i	章 診断の技術	
13.1	"さて動かない"というときの対策	
	10 倍も差がつく	
	ホームズに学ぶ	
13.2	現状の観察	
	かきまわさないこと	173
	消えてしまら手がかり	175

	2 ⁿ 方式でいく	· 176
13.3	裏づけ資料を持つ	•177
	データや経験の蓄積	•177
	誤りやすいところ	·178
	診断の手がかり	•178
13.4	追跡のルール	·180
	網をしぼる	·180
	最後のステップ	· 181
13.5	迷路と手がかり	· 182
	迷宮に入らぬ手だて	·182
	"なおした"と"なおった"	· 183
参	考文献	·184
索	号	巻末