Contents

Foreword	•				•		•		•							V
PREFACE						•	•		•			•		•		vii
CONTENTS OF	Vo	LUME	II	•	•	•	•	•	•	•	•	•	•	•	•	xiii

A. The capacitor, its characteristics and its applications in a discharge circuit

1.	Capacitors in Discharge Circuits in General and the Equivalent (Circu	it D	iagra	m	1
2.	Characteristics of Dielectric Material					3
3.	Tables of Properties of Dielectric Materials Used for Capacitor	s	•			11
4.	Specifications and Standards of Capacitors					18
5.	Faults Which May Occur in Fixed Capacitors	•			•	24
6.	Basic Combinations of RCL Elements in the Circuitry					27
7.	Calculation and Layout of Capacitors for Discharge Operation		•			36
8.	The Capacitor with Large Energy Content for Powerful Single	Disc	harg	es		41
9.	The Impulse Capacitor in Cyclic Charging Operation	•				44
10.	Periodic Discharge Operation		•			49
11.	Capacitor Battery for Continuously High Output in Discharge	Oper	ratio	n	•	
	(Impulse Welding Operation)				•	53
12.	Capacitors Having Extremely High Insulation Values	•	•	•		56
13.	Capacitor Lines with Constant Impedance per Unit of Length		•			56

B. Switching means

1.	Thyratrons	•	•		•		•		•	•	•	•	•	•	•		59
2.	The Ignitron		•		•				•	•		•	•	•	•	•	97
3.	The Multivib	rator		•	•	•				•	•	•	•	•	•		100
4.	Symmetrical S	Swite	h T	ubes	with	Mer	cury	Filli	ng	•	•	•		÷	÷	•	107
5.	Fixed Spark	Gaps		•	•					•	•	•	•	•	•	•	113
6.	Moving Sparl	k Ga	ps	•	•	•		÷		÷	•	•		•	•	•	138
7.	The Lightning	g Pro	tect	or	•	•								•	•		157
8.	The Actuation	n of	Mag	gnetio	c Cor	ntact	ors a	t Pre	dete	rmin	ed P	hase	Ang	les			159
9.	Quenching Sp	park	Gar	os		•		•				÷		•	•	•	163

¢

C. Line conductors

1.	The Influence of Impe	danc	е		•	•	•	•	•	•	•	•		. 1	72
2.	The Overhead Line for	High	n and	Hig	hest	Volta	ages	with	Larg	e Co	nduc	tor	Radi	us 1'	73
3.	The Coaxial Cable	•		•	•	•	•	•	•	•	•	•	•	. 1	74
4.	Energy Considerations			•	•		•	•	÷	•	•	•	•	. 1	76
5.	Sandwich Lines .				•			•	•	•		•	•	. 1	77
6.	Compensation Conduc	ctor l	Form	S	•	•	•	•	•	•	•	•		. 1	79

D. Conversion of capacitor energy into current impulses

1.	Direct Discharge	Through a Co	nductor		•	•	•				182
2.	The Transformed	Discharge for	Highest	Curi	rent	Peak	s		•		186

E. Conversion of capacitor energy into voltage impulses

1.	The Cascade Circuit					196
2.	The Nondistorting Pulse Transformer		•			200
3.	High Peak Power Transformers with Differentiating Characteris	tics				210
4.	Impulse Setups for Cyclic Operation and Very Short Impulse Dr	urati	on			218
5.	Pulse-Forming Network		•	•		227
6.	Cable Discharge Lines and Pulse Generators					234
7.	Spark Gap Triggering Device by Marx					249
8.	Ignition Transformer for Internal Combustion Engines.					256
9.	Voltage Impulses in Extensive Networks	•				258
10.	Automatic Overhead Line Protection by Means of Periodic Capac.	itor I	Disch	arge	s	260
11.	Lightning Flashes in Nature as Capacitor Discharges					263
12.	Steepness of Voltage Shock Pulses					266
13.	The Operation of Kerr Cells by High-Voltage Impulses					269
14.	Biological Applications of Voltage Impulses in Electrical Fishing	ţ				281

F. Conversion of capacitor energy into x-ray flashes and neutrons

1. Physics, Design, and Circuitry in x-Ray Flashing .	•					292
2. x-Ray Irradiation of Subjects in Mechanical Motion		•				310
3. Capacitor Discharges in Feeding Ion and Neutron Sc	urces	s.		•	•	330

G. Conversion of capacitively stored energy into heat

1.	Impulse Welding, Direct Capacitor Discharge	338
2.	The Transformed Capacitor Discharge in Welding Engineering	340
3.	Electrodynamic "Cooling" by Particle Ejection in Capacitor Impulse Welding	356
4.	Microinduction Hardening-Application of Instant Heating by a Capacitive	
	Energy Impulse	362
5.	High-Frequency Heating by Rapid Impulse Sequences the Blast Spark High-	
	Frequency Generator by Marx	373
6.	Annealing of Wires by Means of Capacitor Discharge Pulses	376
7.	Exploding Wire Discharges	379
8.	High-Temperature Plasma Generation by High-Energy Capacitor Discharges .	391

H. Conversion of capacitively stored energy into magnetic fields

1. The Creation of Very Intensive Magnetic Fields for Short Duration . . . 402

CO	NTENTS			xi
2.	Application of Strong Magnetic Shock Fields in Nuclear Physics	•		409
3.	Capacitor Discharges in Magnetic Plasma Generation and Acceleration			411
4.	Capacitor Discharge Magnetizers			434
5.	The Magneto-Optical Shutter-Application of the Faraday Effect .			444
6.	Metal Forming with Pulsed Magnetic Fields	•	•	450

I. Conversion of capacitively stored energy into acoustic impulses

1.	1. Conversion by Electroacoustic Converters and Applications										
2.	Air Impulse Sound		•			465					
3.	3. Shock Sound by Underwater Capacitor Discharges										
4.	Applications of High Intensity Shock Group		•			503					
5.	The Photography of Discharge Sound Shocks and Its Technic	cal	App	licatio	n.	530					

J. Material working by high-frequency capacitor discharges (spark erosion)

1. Facts and Pu	rpose	es of	the	Mec	hanis	m o	f Spa	rk E	rosic	n				٠	•	538
2. Electro-Erosio	on M	lachi	ining	of I	Metal	S			•	•				•	•	539
3. Shaping Meta	als by	/ Ele	ctric	al E	xplos	ion S	Shocl	k Wa	ve	•	•	•	•	•	•	555
Bibliography									•						•	557
AUTHOR INDEX		-		•	•				•		•		•		•	599
MANUFACTURERS	INDE	X	•	•	•			•	•	•	•	•	•	•	•	603
Subject Index		•	•	•	•	•	•	•	•	•	٠	٠	•	•	·	605