CONTENTS

Part I LOGICAL AND FUNCTIONAL AIDS TO DESIGN

Chapter 1	Decision Theory	3
	W. B. Cottingham and P. W. McFadden (source authors)	
	1-1 Decision making in the design process, 4	
	1-2 Utility theory, 8	
	1-3 Decision making under constraints, 19	
	1-4 Decision trees, 30	
Chanter 2	Optimization Theory	37
mapter 2	optimization incory	0.
	W. B. Cottingham (source author)	
	2-1 The general model for optimization problems, 38	
	2-2 Simple differential calculus, 39	
	2-3 Lagrangian multipliers, 44	
	2-4 Calculus of variations, 49	
	2-5 Mathematical programming, 57	
	2-6 Linear programming, 61	
	2-7 Search methods, 75	

X

Chapter 3	Variations and Tolerances in Design	87
	W. B. Cottingham (source author)	
	3-1 Statistical tools for inference, 88	
	3-2 Unavoidable error, 97	
	3-3 Designing with consideration for error, 103	
	3-4 Design of experiments, 107	
Chapter 4	Project Scheduling	122
	P. W. McFadden (source author)	
	4-1 Program evaluation and review technique, 122	
	4-2 Critical path method, 130	
	Part II COMPUTER AIDS TO DESIGN	
Chapter 5	Digital Computer Fundamentals	139
	P. M. Sherman	
	5-1 Computers in engineering design, 140	
	5-2 Computer organization and operation, 143	
	5-3 Problem analysis, 154	
	5-4 Computer programming, 168	
	5-5 Program development, 202	
	5-6 Programming examples, 208	
	5-7 Summary, 221	
Chapter 6	Computer Applications in the Design Process	225
	P. M. Sherman and R. A. Tutelman	
	6-1 Computer applicability to design problems, 226	
	6-2 Elements of computer-aided design, 233	
	6-3 Information storage and retrieval, 263	
	6-4 Machine-aids systems, 274	
	Part III SYSTEM RELIABILITY	
Chapter 7	Reliability—Basic Concepts and Allocation	283
- Impici	R. C. Winans	200
	7-1 Basic reliability definitions, 284	
	7-2 System reliability characteristics, 288	
	7-3 A system reliability program, 296	
	7-4 Initial allocation processes, 296	
	7-5 Allocation to lower equipment levels, 313	

CONTENTS	xi

Chapter 8	Reliability of Electronic Parts R. C. Winans	332
	8-1 Effects of stresses on reliability, 333 8-2 Failure modes and mechanisms, 334 8-3 Failure rates versus stress levels, 337 8-4 Electronic parts application considerations, 349 8-5 Probability distribution functions, 357 8-6 Reliability control and prediction for electronic parts, 366	
Chapter 9	Reliability Prediction and Design Review R. C. Winans	372
	9-1 Prediction methods for design review, 372 9-2 System evaluation testing, 380 9-3 Maintenance considerations, 386 9-4 Summary and future trends, 390	
Chapter 10	Part IV APPROACH TO PHYSICAL DESIGN System Organization and Partitioning	395
•	10-1 Establishing system requirements, 396 10-2 Nature of the partitioning problem, 412 10-3 Partitioning and performance, 419 10-4 Partitioning and reliability, 421 10-5 Partitioning and cost, 426	
Chapter 11	Module and Interconnection Design J. M. Rausch	440
	 11-1 Integrated circuit packaging, 441 11-2 Printed wire board techniques, 448 11-3 Interconnection techniques, 472 11-4 Equipment structures, 495 	

xii CONTENTS

Chapter 12	Case Study: The Advanced Data Processing System	505
	12-1 System organization and design requirements, 507 12-2 System partitioning and structural design, 512	
	12-2 System partitioning and structural design, 512 12-3 Heat-transfer design, 537	
	12-4 Electrical constraints and interconnection design, 549	
	12-5 Computer aids to design, 569	
	12-6 Outlook for the future, 580	
Appendix A	Principal Symbols and Units	583
	Index	587