xiii Preface

Contents of Volume 1 xv

Chapter 1 Flow Pattern Transitions in Gas-Liquid Systems: Measurement and Modeling A. E. Dukler and Y. Taitel 1

4

- 1 Introduction
- 1 2 Classification of Flow Patterns 3
 - 2.1 Horizontal Pipes: Fig. 1
 - Stratified 2.1.1 4
 - 2.1.2 Intermittent 5
 - 2.1.3 Annular 5
 - 2.1.4 **Dispersed Bubble** 5
 - 2.2 Vertical Pipes: Fig. 2 5
 - Bubble Flow 2.2.1 5 5
 - 2.2.2 Slug Flow
 - 2.2.3 Churn Flow 6 2.2.4 Annular Flow 6
 - 7
- **3** Flow-Pattern Detection
 - 7 3.1 Visual Methods
 - Methods Based on Pressure Measurement 3.2 8
 - 3.3 Methods Based on Photon Attenuation 11
 - Methods Based on Electrical Conductivity 12 3.4
- 4 Modeling Flow-Pattern Transitions: Some General Ideas 14
- 5 Horizontal and Slightly Inclined Pipes: Steady Motion without Mass Transfer between Phases 16
 - 5.1 **Equilibrium Stratified Flow** 16
 - 5.2 Transition from Stratified Flow 19
 - Transition between Intermittent and Annular 22 5.3
 - 5.4 Transition between Stratified-Smooth and Stratified-Wavy Patterns 23
 - 5.5 Transition between Intermittent and Dispersed Bubble 25 Patterns
 - The Flow Pattern Map: Summary 5.6 26 Comparison with Data 5.6.1 26
- 6 Effect of Flow Transients in Horizontal Pipes 29
 - 6.1 Analysis 30
 - 33 6.2 An Example: Liquid Feed Transients
 - An Example: Fast Gas Transients 34 6.3
- 7 Effects of Boiling and Condensation in Horizontal Pipes 37
 - 7.1 Analysis 37
 - 7.2 Transition Criteria 41

```
Contents
```

- 8 Vertical Pipes: Steady Motion without Mass Transfer—Upflow and Downflow **46**
 - 8.1 Concurrent Upflow 47
 - 8.1.1 Bubble-to-Slug Transition 47
 - 8.1.2 Slug-to-Churn Transition 53
 - 8.1.3 Transition from Annular Flow 57
 - 8.1.4 Discussion 59
 - 8.2 Concurrent Downflow 61
 - 8.2.1 Transition from Annular Flow 61
 - 8.2.2 Slug-to-Dispersed Bubble Transition 64
- 9 Effect of Pipe Inclination 65
 - 9.1 Concurrent Upward Flow in an Inclined Tube 66
 - 9.1.1 Bubble-to-Slug Transition and Minimum Inclination Angle for Bubbly Flow 67
 - 9.1.2 Transition from Annular Flow 70
 - 9.1.3 Slug-to-Churn Transition 70
 - 9.1.4 Intermediate Angles of Inclination 70
 - 9.2 Concurrent Downward Flow in an Inclined Tube 71
 - 9.2.1 Stratified Smooth-to-Stratified Wavy Transition 73
 - 9.2.2 Stratified-to-Annular Transition 73
- 10 Transition Mechanisms in Tubes: An Overview 76
- 11 Vertical Rod Bundles 77
 - 11.1 Bubble Rise Velocities 78
 - 11.2 Bubble-to-Slug Transition 82
 - 11.3 Slug-to-Churn Transition 84
 - 11.4 Churn-to-Annular Transition 84
- Nomenclature 87

References 88

Chapter 2 A Critical Review of the Flooding Literature S. George Bankoff and Sang Chun Lee 95

1 Introduction 95

1.2

2.1

- 1.1 Description of Vertical Countercurrent Annular Flow
 - Characteristics of the Flooding Phenomenon 97
- 1.3 Associated Phenomena 99
- 1.4 Classification of Previous Flooding Studies 102
- 2 Fundamentals of Countercurrent Flow **102**
 - Pressure Drop 103
 - 2.1.1 Adiabatic Flow 103
 - 2.1.2 Condensing Flow 106
 - 2.2 Mean Film Thickness 107
 - 2.2.1 Falling Film without Gas Flow 107
 - 2.2.2 Liquid Film with Countercurrent Gas Flow 109
 - 2.3 Interfacial Shear Stress 110
 - 2.3.1 Adiabatic Flow 111
 - 2.3.2 Condensing Flow 114
- 3 Classification of Flooding Models 115

vi

96

4	Brief F 4.1	Review of Analytical Models 116 Stability Theory of a Traveling Wave 116		
		 4.1.1 Potential Flow Model 116 4.1.2 Viscous Flow Model 126 4.1.3 Finite-Amplitude Wave Model 127 		
	4.2	Envelope Theories 129 4.2.1 Separate Cylinders Model 129 4.2.2 Drift-Flux Model 130 4.2.3 Separated-Flow Models 130		
	4.3	Static Equilibrium Theories1334.3.1Stationary Wave Model1334.3.2Hanging Film Model1344.3.3Roll Wave Model135		
	4.4	Theory of Slug Formation1364.4.1Kordyban and Ranov Model1364.4.2Wallis and Dobson Model1384.4.3Taitel and Dukler Model1394.4.4Gardner Model1404.4.5Mishima and Ishii Model141		
5	Experi	imental Investigations 142		
	5.1	Experimental System 142		
	5.2	Empirical Correlations 143		
6	Comp	arisons and Discussion 150		
	6.1	Flooding without Phase Change 150		
_	6.2	Flooding with Phase Change 161		
7	Furthe	er Aspects of Vertical Countercurrent Flooding 168		
	7.1	lube-End Conditions 168		
	7.Z	lube Length 169		
	7.3	lube Diameter 169		
~	7.4	Liquid Droplet Entrainment 170		
8 Summary and Conclusions 171				
Ref	ference	s 175		
Chapt	ter 3	A Comprehensive Examination of Heat Transfer Correlations Suitable for Reactor Safety Analysis D. C. Groeneveld and C. W. Snoek 181		
1	Introd	luction 181		
2	Single	e-Phase Heat Transfer 184		
	2.1	Introduction 184		
	2.2	Subcooled Water Heat Transfer 184		
	2.3	Superheated Steam Heat Transfer 184		
	2.4	Bundle Geometry 186		
-	2.5	Entrance and Spacer Effects 186		
3	Nucle 3.1	eate Boiling and Convective Evaporation 188 Introduction 188		

```
Contents
```

- 3.2 Prediction Methods 189
 - 3.2.1 Nucleate Boiling Only 189
 - 3.2.2 Saturated Boiling: Nucleate Boiling and Forced Convective Evaporation 189
- 3.3 Conclusions and Final Remarks 194
- 4 Critical Heat Flux 195
 - 4.1 Introduction 195
 - 4.2 Correlations 195
 - 4.3 Alternative Prediction Methods 202
 - 4.3.1 Analytical Methods 202
 - 4.3.2 Table Look-Up Technique 203
 - 4.3.3 Graphical Techniques 210
 - 4.4 Parametric Trends 210
 - 4.4.1 General 210
 - 4.4.2 Cross-Section Geometry 214
 - 4.4.3 Effect of Rod-Spacing Devices 215
 - 4.4.4 Effect of Heat Flux Distribution 216
 - 4.4.5 Transient Effects 217
 - 4.4.6 Other Effects 217
 - 4.5 Final Remarks 218
- 5 Transition Boiling **218**
 - 5.1 Introduction 218
 - 5.2 Data Trends 219
 - 5.3 Correlations 219
 - 5.4 Prediction of the Critical Heat Flux Temperature 225
 - 5.5 Discussion 226
 - 5.6 Final Remarks 226
- 6 Minimum Film Boiling 227
 - 6.1 Introduction 227
 - 6.2 Minimum Film Boiling Types 227
 - 6.3 Prediction Methods 233
 - 6.4 Correlation Assessments 234
 - 6.4.1 Data Trends 234
 - 6.4.2 Comparison with Data 235
 - 6.4.3 Discussion 236
 - 6.5 Final Remarks 237
- 7 Film Boiling 238
 - 7.1 Introduction 238
 - 7.2 Prediction Methods 238
 - 7.2.1 Post-Dryout Models 238
 - 7.2.2 Post-Dryout Correlations 239
 - 7.3 Comparison with Experimental Data 250
 - 7.3.1 Available Data 250
 - 7.3.2 Comparison with Tube Data 250
 - 7.3.3 Comparison with Rod Bundle Data 253
 - 7.3.4 Miscellaneous 255
 - 7.4 Final Remarks 255

8 Summary of Conclusions and Final Remarks 256 Acknowledgments 257

viii

Nomenclature 257 References 260

Chapter 4 Reboilers P. B. Whalley and G. F. Hewitt 275

- 1 Introduction 275
- 2 Types of Reboilers 275
- 2.1 Internal Reboiler 275
 - 2.2 Kettle Reboiler 277
 - 2.3 Vertical Thermosyphon Reboiler 278
 - 2.4 Horizontal Thermosyphon Reboiler 281
 - 2.5 Selection of Type 283
- 3 Detailed Experimental Studies 285
 - 3.1 Kettle Reboilers 285
 - 3.2 Vertical Thermosyphon Reboilers 292
- 4 Problems in Design 295
 - 4.1 Kettle and Internal Reboilers 296
 - 4.2 Vertical Thermosyphon Reboilers 296
 - 4.3 Horizontal Thermosyphon Reboilers 296
- 5 A Design Strategy 297
 - 5.1 Simulation Calculation 297
 - 5.2 Design Calculation 297
- 6 Two-Phase Pressure Drop 298
 - 6.1 Components of Two-Phase Pressure Drop 298
 - 6.2 Two-Phase Frictional Pressure Drop in Tubes 299
 - 6.3 Void Fraction in Tubes 300
 - 6.4 Two-Phase Frictional Pressure Drop in Cross Flow 301
 - 6.5 Void Fraction in Cross Flow 302
 - 6.6 Use of the Homogeneous Model of Two-Phase Flow 303
- 7 Boiling Heat Transfer Coefficients 305
 - 7.1 Boiling Inside Tubes 305
 - 7.2 Boiling in Cross Flow 310
- 8 Critical Heat Flux 312
 - 8.1 Critical Heat Flux Inside Tubes **312**
 - 8.2 Critical Heat Flux in Cross Flow **315**
- 9 Instability 318
- 10 Conclusions 322
- Nomenclature 323
- References 327
- Chapter 5 Flow of Gas-Solid Mixtures through Standpipes and Valves L. S. Leung and P. J. Jones 333
 - 1 Introduction 333

- 2 Flow Regimes 337
 - 2.1 Fluidized and Nonfluidized Regimes 337
 - 2.2 Kojabashian's Classification 341
 - 2.2.1 Fluidized Flow 341
 - 2.2.2 Nonfluidized Flow 343
 - 2.2.3 Summary of Kojabashian's Classification 343
 - 2.3 Classification of Leung and Jones in Fluidized Flow 343
 - 2.4 Summary of the Classification of Flow Regimes **346**
- 3 Demarcation between Flow Regimes 347
 - 3.1 Demarcation between Fluidized and Nonfluidized Flow 347
 - 3.2 Demarcation within the Fluidized Mode: Type I and Type II 350
 - 3.3 Demarcation within the Nonfluidized Mode: TRANPACFLO and PACFLO 355
- 4 Equations Describing Each Flow Regime **355**
 - 4.1 Equations for PACFLO 355
 - 4.2 Equations for TRANPACFLO 357
 - 4.3 Equations for Type I Fluidized Flow 357
 - 4.4 Equations for Type II Fluidized Flow 358
- 5 Coexistence of Flow Modes 359
 - 5.1 Introduction 359
 - 5.2 Coexistence of Flow Regimes at Constant Superficial Fluid Velocity **359**
 - 5.2.1 General Classification 359
 - 5.2.2 Type I Lean-Phase Fluidized Flow Coexistence with PACFLO/TRANPACFLO **360**
 - 5.2.3 Type I Fluidized Flow (Lean-Phase) Coexistence with Type II Fluidized Flow (Dense-Phase) 362
 - 5.2.4 Type I Dense-Phase Fluidized Flow Coexistence with PACFLO/TRANPACFLO **365**
 - 5.3 Coexistence of Flow Modes with Variation in the Superficial Velocity **366**
 - 5.3.1 General Classification 366
 - 5.3.2 Coexistence of Flow Modes Caused by Gas Compression 366
 - 5.3.3 Coexistence of Flow Modes Caused by Introduction of Aeration Gas 368
- 6 Effects of Gas Compression and Aeration **372**
 - 6.1 Gas Compression 372
 - 6.2 Aeration 374
 - 6.2.1 Aeration Required for Counteracting Gas Compression 374
 - 6.2.2 Aeration in Excess of that Required for Counteracting Gas Compression 375
- 7 Flow of Gas-Solid Mixtures through an Orifice or a Valve 377
 - 7.1 Introduction 377
 - 7.2 Flow of a Fluidized Mixture through an Orifice 378 7.2.1 Solids 378
 - 7.2.2 Gas 381

х

	7.3	Nonfluidized Flow through an Orifice 382 7.3.1 Nonfluidized Flow through an Orifice with No Fluid Drag Effects 384
	- 4	7.3.2 Nonfluidized Flow through an Ornice with Fluid Drag Effects 366
	7.4	Flow through L and J valves 387
_	7.5	Summary of Gas-Solid Flow Infough Valves 390
8	Stabili	ty of Standpipe Flow 39 I
	8.1	Introduction 391
	8.2	Stability of Uniform Suspension Flow 392
	8.3	Flooding Instability 393
	8.4	Stability from Continuity (Kinematic) Wave Direction Consideration 394
	8.5	Ledinegg Supply-Demand Analysis of Flow Stability 396
	8.6	Multiple Steady-State and Bifurcation-Type Instability 400
	8.7	Oscillatory Steady State 400
9	Analy	ses of Industrial Standpipe Systems 401
	9.1	Introduction 401
	9.2	System with Fixed P_1 , P_3 , and z 402
		9.2.1 One Fluidized Flow Mode Throughout 402
		9.2.2 One Nonfluidized Mode Throughout 404
		9.2.3 Multiple Steady States and Hysteresis 405
	0.2	System with Fixed P P and W 407
	9.5	9.3.1 Coexistence of Lean-Phase and Dense-Phase Fluidized Flow 408
		9.3.2 Coexistence of Lean-Phase Fluidized Flow with TRANPACFLO 410
		9.3.3 Summary of the Case Study for the Fig. 3 System 411
	9.4	Standpipe in Multiple Fluidized Beds 411
	9.5	System with Fixed P_1 and z and with P_3 Dependent
		on W, 415
	9.6	Concluding Remarks 416
No	mencla	iture 417
Ref	ference	es 419
		·
Chapt	ter 6	Core-Annular Flow of Oil and Water through a Pipeline
		R. V. A. Ullemans and G. Uoms 421
1	Introc	luction 427
2	Core	Flow Characteristics and Literature Review 430

- 2.1 Criteria for the Existence of Stable Core-Annular Flow 431
 - 2.1.1 Practical Observations 431
 - 2.1.2 Hydrodynamic Stability 431
 - 2.1.3 Velocity Range for Stable Core Flow **432**
- 2.2 Existing Theoretical Models and Correlation Methods 434
 - 2.2.1 Hold-up 434
 - 2.2.2 Pressure Loss for Stable Core Flow 436

- 2.3 Pressure Loss during Restart of Core Flow from a Stratified Layer 443
 - 2.3.1 Introduction 443
 - 2.3.2 Completely Stratified Flow 443
 - 2.3.3 Partially Stratified Flow 444
 - 2.3.4 Comparison with Experimental Data 446
- 3 A New Theoretical Model: The Lubricating-Film Model 447
 - 3.1 Model Description 448
 - 3.2 Qualitative Predictions 450
 - 3.2.1 Sensitivity Study 450
 - 3.2.2 Conclusions 454
- 4 Experiments in 2- and 8-in Pipes 458
- 5 Comparison between the Theoretical Model and Experiments 459
- 6 Conclusions 467
- Nomenclature 469

References 471

Appendix 1 Basic Equations of the Lubricating-Film Model **472**

- A1.1 Derivation of Basic Equations 472
- A1.2 Solution Procedure 474

Index 477

xii