Contents

1	Vac	ua and Vacuum Technology	
	1.1	What is a Vacuum?	1
	1.2	The Basic Topics of Vacuum Technology	2

2 Conductance and Pump Speed

2.1	The Concept of Conductance	3
2.2	Conductances in Series and Parallel	4
2.3	The Effect of Pressure on Flow Regime and Conductance	5
2.4	The Conductance of an Aperture	5
2.5	The Conductance of a Channel	6
2.6	The Conductance of a Cold Trap	8
2.7	The Speed of a Pump	8
2.8	Pump-down Time	10

3 Vacuum Pumps

3.1	Preliminary Survey of Types of Vacuum Pump	12
3.2	Mechanical Pumps	13
2.2	3.2.1 Oil-sealed mechanical pumps. 3.2.2 Roots pumps. 3.2.3 Mechanical molecular pumps. 3.2.3.1 Molecular drag pumps. 3.2.3.2 Turbo-molecular pumps.	10
3.3	vapour-stream Pumps (Diffusion Pumps)	18
	3.3.1 Basic principle. 3.3.2 Mercury diffusion pumps.	
	3.3.3 Oil diffusion pumps. 3.3.4 The speed of diffusion pumps. 3.3.5 Backstreaming of diffusion pumps. 3.3.6 Steam ejector pumps.	
3.4	Chemical Pumps	24
,	3.4.1 Sputter ion pumps. 3.4.2 Titanium sublimation pumps. 3.4.3 Other chemical pumps.	
3.5	Sorption Pumps	27
3.6	Cryopumps	30

vii

Measurement of Pressure		
4.1	Introduction	33
4.2	Survey of Types of Gauge Measuring Total Pressure	34
	4.2.1 Barometric types. 4.2.2 Mechanical types. 4.2.3	
	Gauges of the McLeod type. 4.2.4 Thermal conductivity	
	gauges. 4.2.5 Hot-cathode ionisation gauges. 4.2.6 Cold-	
	cathode ionisation gauges. 4.2.7 Gauges depending on	
	other physical properties.	
4.3	The McLeod Gauge	35
	4.3.1 The mercury vapour-stream effect.	
4.4	Thermal Conductivity Gauges	38
	4.4.1 The Pirani gauge. 4.4.2 The thermocouple gauge.	
	4.4.3 The thermistor gauge.	
4.5	Hot-cathode Ionisation Gauges	42
	4.5.1 The Bayard–Alpert gauge. 4.5.2 Other hot-cathode	
	gauges.	
4.6	Cold-cathode Ionisation Gauges	46
	4.6.1 The Penning cold-cathode gauge. 4.6.2 Other	
	cold-cathode gauges.	
4.7	The Knudsen Gauge	48
4.8	The Viscosity Gauge	48
4.9	Gauge Calibration	49
	4.9.1 Comparison with a McLeod gauge. 4.9.2 Gas-expan-	
	sion method. 4.9.3 The dynamic method.	
4.10	Thermal Transpiration and Pressure Measurement	52
4.11	The Determination of Partial Pressures	53
	4.11.1 Partial pressures by mass spectrometry. 4.11.2	
	Important characteristics of mass spectrometers. 4.11.3	
	Types of mass spectrometer. 4.11.4 Measurement of partial	
	pressures by sorption methods.	

5 Materials and the Design of Apparatus

5.2Glass and Glass-to-Metal Seals595.3Metals665.4Plastics665.5Waxes and Greases665.6Demountable Couplings and Motion in Vacuo66
5.3Metals65.4Plastics65.5Waxes and Greases65.6Demountable Couplings and Motion in Vacuo6
5.4Plastics625.5Waxes and Greases625.6Demountable Couplings and Motion in Vacuo62
5.5Waxes and Greases5.55.6Demountable Couplings and Motion in Vacuo65
5.6 Demountable Couplings and Motion <i>in Vacuo</i> 63
5.7 Vacuum Taps and Valves 65

viii

4

Contents

58	Outgassing	67
5.0		6
5.9	Design Procedure	68
5.10	Leak Detection	71
	5.10.1 Detection of presence, but not location. 5.10.2 The	
	bubble method. 5.10.3 Use of Tesla discharge. 5.10.4 Use	
	of instrumentation already part of the apparatus. 5.10.5	
	Use of special instrumentation.	

6 Ultra-high Vacuum

6.1	General	/0
6.2	Pumps	77
6.3	Methods of Pressure Measurement	77
	6.3.1 The problem. 6.3.2 Hot-cathode gauges. 6.3.3	
	Cold-cathode gauges. 6.3.4 Partial pressure analysis.	
6.4	Construction and Materials of UHV Systems	80

7 Applications of Vacuum Technology

7.1	General	83
7.2	High Vacuum as an Electrical Insulator	84
7.3	Separation by Vacuum Distillation	84
7.4	Freeze Drying	85
7.5	Manufacture of Lamps and Thermionic and Semi-	
	conductor Devices	87
7.6	Vacuum Metallurgy	88
7.7	Coating by Vacuum Evaporation	90
7.8	Environmental Testing of Spacecraft	92
7.9	Vacuum as Thermal Insulation	93

Appendices

- I Some Relevant Formulae in the Kinetic Theory of Gases 97 The Maxwellian distribution of speeds. The mean-square speed. The mean speed. The average kinetic energy. Equation of perfect gases. The average rate of bombardment. Quantities of gas. Flow rates. Mean free path. The thermal conductivity of a gas.
- II Notes on Topics in Physics Relevant to Vacuum Technology 10

70

100

 Evaporation and vapour pressure. Outgassing. Adsorption. Thermal accommodation coefficient. Gettering. Diffusion. Photons. Electronic structure of atoms. Ionisation potential and efficiency of ionisation. Thermionic emission. Photoelectric emission. Field emission. X-rays. The gyromagnetic or cyclotron frequency. Cold-cathode discharge. Sputtering. The Boltzmann factor. III Bibliographical Note IV Some Chemical Elements Used in Vacuum Technology 		109
IV	Some Chemical Elements Used in Vacuum Technology	110
Subject	Index	113
Author Index		117

Atomic and molecular magnitudes. Units and constants.