Contents and Subject Index

EXECUTIVE SUMMARY
1. INTRODUCTION
1.1 Alloy and Compound Superconductors
1.2 The Critical Superconducting Parameters
1.2.1 The Critical Surface
1.2.2 The Upper Critical Field
1.2.3 The Critical Current Density
1.3 Conductor Design and Fabrication Considerations—Plan of the
Review
2. THE DESIGN AND FABRICATION OF COMPOSITE CONDUCTORS 11
2.1 The Current-Carrying Component–Flux Pinning
2.2 Stability
2.3 A.C. Loss
2.3.1 Hysteretic Loss
2.3.2 Eddy Current Loss
2.4 The Design of Stranded Conductors—Stability and A.C. Loss 15
2.5 Fabrication Techniques
2.5.1 Conventional Processing Steps for Alloy and Compound
Conductors
2.5.2 Thermomechanical Processing of Alloy and Compound
Conductors
2.5.3 Unconventional Processing Methods
3. STABILITY CONSIDERATIONS IN CONDUCTOR DESIGN
3.1 Introduction-Stability of a Composite Superconductor
3.2 Flux-Jump Stabilization
3.3 Cryogenic Stabilization

viii	Contents	and	Subject	Index
------	----------	-----	---------	-------

3.4	Factors Controlling the Stability of a Conductor	23
3.5	Filament Diameter	27
	3.5.1 Adiabatically Stable Filament Diameter	27
	3.5.2 Dynamically Stable Filament Diameter	28
	3.5.3 Cryostable Filament Diameter	29
3.6	Twist Pitch	. <i>.</i> 30
	3.6.1 Filament Decoupling	30
	3.6.2 Twist-Pitch Selection for Low Ha	33
	3.6.3 Twist Pitch Selection for High Ha	33
3.7	Strand Diameter and Number of Filaments	34
	3.7.1 Strand Diameter Under Twist-Pitch Limitation	34
	3.7.2 Strand Diameter Under Adiabatic Self-Field Limitation	35
	3.7.3 Strand Diameter Under Dynamic Self-Field Limitation	36
	3.7.4 Strand Diameter Under Full Critical-Current (i.e., Steckly)	
	Cryostability.	37
3.8	Summary-General Requirements for Stable Conductor Design .	40
	3.8.1 Flux-Jump Stability	40
	3.8.2 Cryostability	40
4. A.C. L	OSS CONSIDERATIONS IN CONDUCTOR DESIGN	43
4.1	Introduction-Components of A.C. Loss in a Composite Super-	
	conductor	43
	4.1.1 Flux-Jump Stability and Hysteresis Loss	43
	4.1.2 Cryostability and Eddy-Current Loss.	45
	4.1.3 Hysteretic and Eddy-Current Losses–General Description .	45
4.2	Frequency and Amplitude Dependences of A.C. Loss	46
4.3	Hysteretic and Eddy-Current Losses-Some Basic Formulae	48
4.4	Design Requirements for Low A.C. Losses	50
4.5	Filament Diameter, w	51
4.6	Conductor (Strand) Diameter, D	51
	4.6.1 Eddy-Current Loss	51
	4.6.2 Self-Field Loss	51
4.7	Twist Pitch	52
4.8	Matrix Resistivity	54
	4.8.1 Factors Which Influence the Choice of Matrix Resistivity.	54
	4.8.2 Estimation of the Required Matrix Resistivities	56
	4.8.3 Location of the Eddy-Current Barriers–Monoliths,	
	Cables, and Braids	57
	IDERATIONS	58
5 1	Billet Design_Eddy-Current and Diffusion Barriers	60
5.1	Billet Assembly	62
5.2	5 2 1 Ti-Nh Technology	62
	5.2.2 Conventional A15 Compound Technology	64
	5.2.2 Unconventional A15 Compound Technology	64
	5.2.4 Eddy-Current and Diffusion Barriers	70
	5.2.4 Ludy-Current and Dimusion Damers	20
	0.2.0 Greathiness During Assembly	

	5,3	Billet Extrusion.	. 68
		(a) Types of Press	. 68
		(b) Stem Force and Extrusion Pressure	.70
		(c) Stem Speed	.71
		(d) Billet Temperature.	. /1
	5.4	Rod and Wire Drawing	. /2
		5.4.1 Rod Drawing	.72
		5.4.2 Wire Drawing and Finishing Stages	.12
	EE	Strended Conductors	./3
	5.5	5.5.1 Properties	.75
		5.5.7 Fabrication of Cables	.75
		5.5.2 Transposition in Elattened Twisted Monoliths and Cables	79
		5.5.4 "Monolithic" Cables	.81
6.	CONV	ENTIONAL TITANIUM-ALLOY SUPERCONDUCTORS	.89
	6.1	Equilibrium and Nonequilibrium Phases	.89
	6.2	Flux Pinning in Titanium-Niobium Alloys	.89
		6.2.1 Precipitate-Free Subbands	.89
		6.2.2 Subbands and Precipitates	.93
	6.3	Process Optimization of Titanium-Niobium Superconductors	.94
		6.3.1 Intermediate Heat Treatment.	.94
		6.3.2 Final Cold Deformation	.96
	6.4	Recent Advances in Process Optimization	.97
		6.4.1 Total Area Reduction and Final Cold Deformation	.97
		6.4.2 Critical Field Limitation	101
		(a) Canaral Considerations	102
		(d) General Considerations	102
			102
			103
7.	EARL	Y AND UNCONVENTIONAL TITANIUM-ALLOY SUPER-	
	COND	UCTORS	105
8.	CONV	ENTIONAL A15 SUPERCONDUCTORS	108
	8.1	The Superconducting A15 Compounds	108
		8.1.1 Formation of the Compounds	108
	0.0	8.1.2 Technically Important A15 Compounds	112
	8.2	Conventional Processing of A15 Superconductors	112
		8.2.1 The CVD Process,	112
		9.2.2 Evaporation and Sputtering.	113
		8.2.4 The Bronze Process	113
	8 2	Conventional Internal Bronze Process Technology	114
	0.5	8.3.1 Metalworking	115
		8.3.2 The Solid-State Reaction	120
		8.3.3 Variants of the Bronze Process	120
		(a) External Tin Reservoir	129
			120

Index

9.

	(b) Internal Tin Reservoir	130
8.4	Design and Critical-Current Optimization of Conventional	
	Nb ₃ Sn Composite Conductors	131
	8.4.1 Conductor Design	131
	(a) Introduction and Disposition of Copper	131
	(b) Diffusion Barriers	133
	(c) A.C. Loss Characteristics	136
	8.4.2 Flux Pinning and Optimization	137
	8.4.3 Multicomponent Alloying	138
	(a) Transition-Element Additions to Niobium	. 139
	(b) Simple-Metal Additions to the Bronze	. 140
	8.4.4 Kirkendall Porosity	. 142
UNCO	NVENTIONAL A15 SUPERCONDUCTORS	. 144
9.1		144
••••	9.1.1 Origins of the Bronze Process.	144
	9.1.2 Unconventional A15 Superconductors.	145
9.2	Powder Metallurgy.	. 147
	9.2.1 Process Parameters.	. 147
	9.2.2 The Infiltration Process	. 149
	9.2.3 The ECN Process	. 150
	9.2.4 Cold Powder Processing	. 151
	9.2.5 Hot Powder Processing	. 154
9.3	Solid-State Reaction Between Elements.	. 162
9.4	Laminated Microcomposites	. 163
9.5	The Solid-State Precipitation Process.	. 165
9.6	The In-Situ Process	. 167
	9.6.1 Principle of the Method	. 167
	9.6.2 Site Percolation Connectivity and the Proximity Effect	. 170
	9.6.3 Melting and Casting Methods	. 174
	9.6.4 Precipitate Morphology and Process Control	. 175
	9.6.5 Tinning Methods and Cryostabilization	. 176
	9.6.6 <i>In-Situ</i> V_3 Ga Process Development	. 177
9.7	Flux Pinning and Critical-Current Optimization in Powder-	
	Metallurgical and In-Situ Composites.	. 178
	9.7.1 Powder Metallurgy.	. 179
	9.7.2 <i>In-Situ</i> Composites	. 180
9.8	Stress Effects	. 184
	9.8.1 Conventionally and Unconventionally Processed Material .	. 184
	9.8.2 <i>In-Situ</i> -Processed V ₃ Ga Composites.	. 184
	9.8.3 Powder-Processed Nb ₃ 5n Composites	100
	(a) Loid-Powder-Processed Waterial	100
	(D) Hot-Powder-Processed Material	100
0.0		100
9.9	Q.Q.1.A.C. Loss in Multifilementary Composite Super-	. 191
	conductors	101
	992 A C Loss in Untwisted In-Situ Cu-Nh-Sn Composites	106
	J.J.Z. M.O. LOSS IN ONTWISTOR IN OIL OUTINDS ON OUTIPOSITES	. 130

Contents and Subject Index xi

9.9.3 A.C. Loss in Twisted <i>In-Situ</i> Cu-Nb ₃ Sn Composites 202 9.9.4 A.C. Loss in the Jellyroll Process Conductors
9.9.5 Summary: A.C. Loss in <i>In-Situ</i> Composite Super-
conductors
(a) Effective Filament Diameter
(b) Transverse Matrix Resistivity
(c) Shielding Effects
(d) A.C. Loss Reduction
(e) Conclusion
REFERENCES