CONTENTS

Fore	eword xv	
1	APPLICATION OF HEAT TRANSFER THEORY TO HEAT EXCHANGER DESIGN E. U. Schlünder	1
2	ANTICIPATION OF OPERATING PROBLEMS IN THE DESIGN OF HEAT TRANSFER EQUIPMENT K. A. Gardner	21
3	DESIGN METHODS FOR HEAT TRANSFER EQUIPMENT—A CRITICAL SURVEY OF THE STATE–OF–THE–ART J. Taborek	-5
4	HEAT TRANSFER OF BANKS OF TUBES IN CROSSFLOW AT HIGH REYNOLDS NUMBERS A. A. Žukauskas	75
5	SOME EXTRA-HIGH CAPACITY HEAT EXCHANGERS OF SPECIAL DESIGN L. Forgó)1
6	THE OPTIMAL DESIGN OF HEAT EXCHANGER NETWORKS-A REVIEW AND EVALUATION OF CURRENT PROCEDURES T. W. Hoffman	21
7	A CALCULATION PROCEDURE FOR THE TRANSIENT AND STEADY-STATE BEHAVIOR OF SHELL-AND-TUBE HEAT EXCHANGERS S. V. Patankar and D. B. Spalding	55
8	TUBULAR HEAT EXCHANGERS WITH BILATERAL HEAT TRANSFER AUGMENTATION AND CALCULATION OF A HEAT EXCHANGER UNDER UNSTEADY OPERATING CONDITIONS	
	E. K. Kalinin	77

9	SURVEY OF THE HEAT TRANSFER THEORIES IN
	H. Hausen
10	DEVELOPMENTS IN REGENERATOR THEORY SINCE THE
	ADVENT OF THE DIGITAL COMPUTER
	A. J. Willmott
11	TURBULENT HEAT TRANSFER IN TUBES WITH VARIABLE
	FLUID PROPERTIES
	B. S. Petukhov
12	ASPECTS OF TWO-PHASE GAS-LIQUID FLOW
	G. F. Hewitt and R. Semeria
13	ASPECTS OF HEAT TRANSFER IN TWO-PHASE GAS-LIOUID
	FLOW
	R. Semeria and G. F. Hewitt
14	EVAPORATION AND CONDENSATION PHENOMENA IN
	PROCESS HEAT EXCHANGERS
	H. Baldus and E. Abadzić
15	FLUIDIZED BED APPLICATIONS IN HEAT TRANSFER-
	CONTROLLED CHEMICAL PROCESSES
	L. Massimilla and G. Donsi
16	DESIGN OF COOLER CONDENSERS AND EVAPORATIVE
	COOLERS
	T. Mizushina
17	SOME RECENT DEVELOPMENTS IN AUGUMENTED HEAT
	EXCHANGE ELEMENTS
	T. C. Carnavos
18	NUMERICAL SIMULATION OF THE THERMAL BEHAVIOR
	OF CONVECTIVE HEAT TRANSFER EQUIPMENT
	F. W. Schmidt

19	PREDICTION OF PERFORMANCE CHARACTERISTICS OF HEAT-EXCHANGING EQUIPMENT C. L. Spigt, F. van der Walle, and H. I. Bardoux
20	HEAT TRANSFER AND FLOW RESISTANCE CORRELATION FOR HELICALLY FINNED AND STAGGERED TUBE
	BANKS IN CROSSFLOW Z. Mirković 559
21	APPLICATION OF HEAT TRANSFER FINNED SURFACES IN HIGH TEMPERATURE HEAT EXCHANGERS V. I. Tolubinsky, N. V. Zozulya
22	EFFECTS OF TURBULENCE PROMOTERS ON THE
	PERFORMANCE OF PLATE HEAT EXCHANGERS D. Pescod 601
23	INVESTIGATION OF THE HEAT TRANSFER PROCESSES IN TUBE-BANKS IN CROSSFLOW S. Oka, Ž. Kostić and S. Šikmanović
24	INVESTIGATION OF THE EFFECT OF TURNS ON TURBULENT FORCED CONVECTION HEAT TRANSFER IN PIPES S. Kakaç, Y. Göğüs, and M. R. Özgü 637
25	STEADY AND UNSTEADY FLOW PHENOMENA IN AND BEHIND STAGGERED AND IN-LINE TUBE BANKS E. Heinecke and C. B. von der Decken
26	SIMULTANEOUS HEAT AND MASS TRANSFER IN REGENERATORS W. H. Granville and G. Bird
27	MOVING BED HEAT EXCHANGERS AND REGENERATORS—A SUMMARY OF NEW DESIGN THEORY J. Schneller and V. Hlavačka

28	METHODS FOR CALCULATING RADIATION TRANSFER IN HEAT EXCHANGERS
	A. Clark and E. Korybalski
29	PRESSURE DROP AND HEAT TRANSFER BY VAPORIZATION
	J. Bandel and E. U. Schlünder
30	ANALYTICAL MODEL OF THE EFFECT OF SEED CRYSTALS IN
	FALLING-FILM EVAPORATORS
	R. S. Hickman and E. Marschall
31	THE WALL HEAT TRANSFER COEFFICIENT IN PACKED BEDS
	W. Hennecke and E. U. Schlünder
32	PERFORMANCE OF A MOVING-BED HEAT-EXCHANGER
	J. Dul
33	SCALING UP OF A DIRECT CONTACT HEAT EXCHANGER
	M. Perrut and B. Paules
34	ANALYSIS OF DIRECT CONTACT CONDENSERS: SINGLE-
	AND TWO-PHASE SYSTEMS
	D. Moalem and S. Sideman \ldots \ldots \ldots \ldots \ldots \ldots \ldots 331
35	PREDICTION OF LOCAL HEAT TRANSFER IN COMPACT
	TUBULAR HEAT EXCHANGERS WITH VARIOUS
	BODY FORCES
	A. V. Luikov, O. G. Martynenko, and V. L. Kolpashchikov 867

Index 891