TABLE OF CONTENTS

From a	the F	oreword to the First Edition	1
Forew	ord t	o the Second Edition	2
Chap	ter	I. THEORY OF THIN-WALLED BEAM-SHELLS OF	
		OPEN CROSS SECTION	3
ş	1,	Classification of structural elements according to their	
		spatial character	3
6	2.	Fundamental hypotheses. Calculation models. Flexural torsion	5
ş	3.	Displacements and strains. Law of sectorial areas.	
		Generalized hypotheses for plane sections	11
9	4.	The law of plane sections as a particular case of the law	
	-	of sectorial areas	21
S	5.	Stress-strain relation.	27
5	6.	Differential equations of equilibrium for a beam in	• -
-	-	arbitrary coordinates.	33
ş	7.		
	~	coordinates.	40
ş	8.	Generalized cross-sectional forces. The bimoment and its	
_		physical meaning.	47
ş	9,	The shear center	51
C b a a	.		
Cusb	ter	II. CALCULATIONS FOR THIN-WALLED BEAMS OF	
		OPEN CROSS SECTION	57
ş	1.	Coordinates of the shear center and sectorial geometrical	
		characteristics for certain cross sections	57
ş	2.	Torsion of a beam subjected to a transverse load.	75
ş	3.	Application of the method of initial parameters to the	
		design of beams subject to torsion	80
ş	4.	Beams subjected to terminal torsional moments	92
ş	5.		96
ş	6.	Beam torsion and the determination of the bimoments under	
-			109
ş	7.	Torsion of a beam subjected to longitudinal shear force	
•			122
ş	8.		135
ş	9,		141
ş	10.	Practical method for designing hipped systems and shells	
•			145
ş	11.	Beams and shells with cross sections having only one degree	
		· · · · ·	150
ş	12,	Flexural torsion of a cylindrical shell with a long rectangular	
			157
ŝ	13.		162
	-		

ş	14.	Calculation of beams, allowing for longitudinal bending moments	165
ş	15.	Transverse bending moments in thin-walled beams	171
Chap	ter		
		TRANSVERSE CONNECTIONS	181
5	1.	Method of spatial design of multiply supported structures	181
Ş	2.	Beams reinforced by braces	185
ş	з.	Beams reinforced by closely-spaced strips and diagonal braces	196
ş	4.	Beams reinforced by diaphragms	203
ş	5.	Torsion of a beam embedded in an elastic medium	209
ş	6.	Joint action of a plate and thin-walled beam reinforcing it .	217
Chap	oter	IV. THIN-WALLED BEAM-SHELLS OF CLOSED SECTION.	
		ACCOUNT OF SHEAR DEFORMATIONS	222
ş	1.	General variational method of reducing complex two-dimen-	
•		sional problems of shell theory to one-dimensional problems	222
ş	2.	Beam-shell with variable rectangular profile	231
ş	3.	Design of a shell of variable rectangular section without	
		allowance for shear	244
ş	4.	Design of a beam-shell of rigid rectangular section,	
		allowing for shear deformations	249
5	5.	Space structures with rigid contours having a single symmetry axis	252
5	б.	Experimental verification	255
Ch			
Cuat	lel	V. SPATIAL STABILITY OF THIN-WALLED BEAMS LOADED AT THE ENDS BY LONGITUDINAL FORCES	
			767
		AND MOMENTS.	263
5	1.	Differential equations of beam stability	263
ş	2,	Integration of the stability equations for the cases of hinged	
		or lixed ends	272
5	3,	Axial compression. Study of the roots of the characteristic	
		equation, Generalization of Euler's theory.	274
ş		Analysis of beam forms after buckling. Centers of rotation	277
ş	5.	Design of an axially compressed beam with asymmetrical	
_		cross section	279
ş		Stability of plane bending under eccentric compression	281
ş		"Isostabs" of eccentric critical forces	283
ş	8.	Stability of plane bending in beams under eccentric exten-	_
-	~	sion. Stability circle	284
ş		Stability of a rectangular strip.	286
ş		Stability of a T-beam	288
ş	11.	Stability of a compressed chord (of box-like section) of	
	40	a railway bridge	289
)	12,	Stability of plane bending under pure bending	290

5	13,	Determination of the critical forces from the end conditions	
	-	of the beam /68/	292
ş	14,	Experimental verification of the theory on structural and	
		aircraft metal beams.	299
ş	15,	Stability of beams, loaded at the ends by bimoments	308
Chap	ter	VI. GENERAL THEORY OF STABILITY OF PLANE	
-		BENDING IN THIN-WALLED BEAMS AND GIRDERS .	311
ş	1,	General differential equations of stability for plane bending .	311
ş	2.	Stability under longitudinal forces arbitrarily distributed along	
		the beam	322
ş	3.	Stability of plane bending of thin-walled girders subjected	
-		to a transverse load. General case	325
ŝ	4.	Stability of a wide-flanged beam in plane bending.	
•		Generalization of Timoshenko's problem	326
ş	5.	Stability of plane bending of beams with zero sectorial	
3		rigidity. Generalization of Prandtl's problem	330
ş	6.	Application of the method of virtual displacements to the	
3	••	spatial stability of beams	335
			5.50
Chap	+ a =	VII. EQUILIBRIUM OF THIN-WALLED BEAMS UNDER	
Cush		COMBINED LOADING.	343
			343
ş	1.	Bending and torsion of beams subjected to initial stress.	343
§	2.	Bending and torsion of a beam under longitudinal load	347
ş	3.	Bending and torsion of beams with pretensioned reinforcement	350
ş	4.	Torsion of beams subjected to thermal stress	352
ŝ	5.	Stability of beams subjected to initial stresses	354
-			
Chap	ter	VIII. SPATIAL STABILITY OF THIN-WALLED BEAMS WITH	
		CONTINUOUSLY DISTRIBUTED ELASTIC AND RIGID	
		TRANSVERSE CONNECTIONS	355
-			
5	1.	Stability of beams embedded in an elastic medium	355
ş	2.	Stability of a beam subjected to an axial longitudinal force .	356
ş	3.	Stability of a beam subjected to an eccentric longitudinal force	360
ş	4.	Stability of beams rigidly fixed along a line parallel to the axis	363
ş	5.	Application of the method of virtual displacements	368
ş	6.	Spatial stability of arch bridges	372
ş	7.	Spatial stability of suspension bridges	376
ş	8.	Application of the theory to the stability design of airfoils	379
5	9.	Stability of a circular cylindrical shell with reinforcing beams /54/	382
•			
Chap	ter	IX. GENERAL THEORY OF FLEXURAL-TORSIONAL	
•		VIBRATIONS AND DYNAMIC STABILITY	386
ş	1.	Differential equations of free vibrations	386

ş	2.	Integration of the equations of vibration for beams .		•	•	389
ş	3.	Vibration of beams under a longitudinal force			•	393
ş	4.	Action of time-dependent load		•	•	398
ş	5.	Spatial flexural-torsional vibrations of suspension bri	dge	s.		403
ş	6.	Free vibrations and aerodynamic stability of airfoil-t	уре	2		
•		structures	· .			406
Chap	ter	X. BEAMS OF SOLID SECTION	•	•	٠	412
ş	1.	General theory. Fundamental equations	•	•	•	412
ş	2.	Beams with two axes of symmetry	•	•	٠	422
ş	з.	Beams with a single axis of symmetry		•	•	424
ş	4.	Note on Saint-Venant's principle		•	•	430
ş	5.	Warping of a beam in extension			•	431
ŝ	6.	Warping of a strut in compression and bending				434
•						
Chap	ter	XI. BIMOMENT THEORY OF THERMAL STRESSES	\$.	٠	٠	439
ş	1.	Basic equations	•	•	•	439
ş	2.	Thermal stresses in a semi-infinite beam		•	•	442
ş	з.	Thermal stresses in a finite beam	•	•	•	445
Chap	ter	XII. PLANE AND TORTUOUS THIN-WALLED CUR BEAMS	IVE	D.		448
ş	1.	Bending and torsion of a plane beam whose axis form	is a			
		circular arc of small curvature	•		•	448
ş	2.	Spatial stability of circular beams, arches and torus-	-she	ells		
-		of rigid section. Fundamental equations		•		45 4
ş	з.	Radially loaded circular ring. Particular cases.				
•		Generalization of Maurice Levy's problem				455
ş	4.		f			
•	-	Timoshenko's problem				457
Ş.	5.		ax	is.		
3		Generalization of another problem of Timoshenko .		-	-	458
ş	6.		he l	hi-	•	
З	••	moments				459
			•	•	•	100
A SHO	ORT	HISTORICAL SKETCH AND LITERATURE SURVEY		•	٠	464
BIBLIC	GR	АРНҮ		•	•	473
List of	f Ru:	ssian abbreviations		•	٠	490
Subjec	et in	dex		•		492