

CONTENTS

I BANACH SPACES

- 1. On structure, 3
- 2. The axioms, 4
- 3. Linear functionals, 10
- 4. The canonical map, 15
- 5. Subspaces and orthogonality, 16
- 6. The Hahn-Banach theorem, 18
- 7. Other topologies, 23
- 8. Examples and exercises, 28

II LINEAR TRANSFORMATIONS

- 1. Preliminaries, 32
- 2. The adjoint transformation, 36
- 3. The boundedness of the inverse transformation, 37
- 4. Closed transformations, 42
- 5. The uniform boundedness principle, 45
- 6. Projections, 46
- 7. Topologies for transformations, 51
- 8. On range and null-space, 52
- 9. The mean-ergodic theorem, 54

III HILBERT SPACE

- 1. Definition, 57
- 2. Linear functionals, 62
- 3. Orthonormal sets, 65
- 4. Unbounded transformations and their adjoints, 69
- 5. Projections, 72
- 6. Resolutions of the identity, 74

- 7. Unitary transformations, 79
- 8. Examples and exercises, 81

IV SPECTRAL THEORY OF LINEAR TRANSFORMATIONS

- 1. The setting, 86
- 2. The spectrum, 89
- 3. Integration procedures, 91
- 4. The fundamental projections, 92
- 5. A special case, 99
- 6. The spectral radius, 101
- 7. Analytic functions of operators, 102

V THE STRUCTURE OF SELF-ADJOINT TRANSFORMATIONS

- 1. Preliminary discussion, 106
- 2. Positive operators, 107
- 3. The point spectrum, 110
- 4. The partition into pure types, 112
- 5. The continuous spectrum, 115

VI COMMUTATIVE BANACH ALGEBRAS

- 1. Introduction, 122
- 2. Definitions and examples, 123
- 3. The regular representation, 125
- 4. Reducibility and idempotents, 127
- 5. Algebras which are fields, 128
- 6. Ideals, 130
- 7. Quotient algebras, 132
- 8. Homomorphisms and maximal ideals, 136
- 9. The radical, 141
- 10. The representation theory, 143
- 11. Illustrative examples and applications, 145

Selected References, 153 Index, 155

