Contents

	In	troduction	ix	
٥.	Fu	ndamental Not(at)ions		
	Se	ts, functions, physical background	1	
I.	Rea	Real Vector Spaces		
	1.	Spaces	23	
		Subspace geometry, components		
	2.	Maps	31	
		Linearity, singularity, matrices		
	3.	Operators	43	
		Projections, eigenvalues, determinant, trace		
ıı.	Af	fine Spaces		
	1.	Spaces	59	
		Tangent vectors, parallelism, coordinates		
	2.	Combinations of points	66	
		Midpoints, convexity		
	3.	Maps	71	
		Linear parts, translations, components		
III.	Dua	al Spaces		
	1.	Contours, co- and contravariance, dual basis	77	
۲V.	Met	ric Vector Spaces		
	1.	Metrics	87	
		Basic geometry and examples, Lorentz geometry		
	2.	Maps	105	
		Isometries, orthogonal projections and complements, adjoints		
	3.	Coordinates	110	
		Orthonormal bases		
	4.	Diagonalising symmetric operators	131	
		Principal directions, isotropy		

vi CONTENTS

v.	Tensors and Multilinear Forms				
	1.	Tensor products, degree, contraction, raising indices	140		
VI.	Top	ological Vector Spaces			
	1.	Continuity	164		
		Metrics, topologies, homeomorphisms			
	2.	Limits	179		
		Convergence and continuity			
	3.	The usual topology	183		
		Continuity in finite dimensions			
	4.	Compactness and completeness	194		
		Intermediate Value Theorem, convergence, extrema			
VII.	Dif	ferentiation and Manifolds			
	1.	Differentiation	212		
		Derivative as local linear approximation			
	2.	Manifolds	226		
		Charts, maps, diffeomorphisms			
	3.	Bundles and fields	239		
		Tangent and tensor bundles, metric tensors			
	4.	Components	254		
		Hairy Ball Theorem, transformation formulae, raising indices	-		
	5.	Curves	265		
		Parametrisation, length, integration			
	6.	Vector fields and flows	274		
		First order ordinary differential equations			
	7.	Lie brackets	281		
		Commuting vector fields and flows			
vIII.	Connections and Covariant Differentiation				
	1.	Curves and tangent vectors	288		
		Representing a vector by a curve			
	2.	Rolling without turning	1		
		Differentiation along curves in embedded manifolds			
	3.	Differentiating sections	7		
		Connections, horizontal vectors, Christoffel symbols			
	4.	Parallel transport	3 1		
*		Integrating a connection			

	5.	Torsion and symmetry	320
		Torsion tensor of a connection	
•	6.	Metric tensors and connections	325
		Levi-Cività connection	
	7.	Covariant differentiation of tensors	336
		Parallel transport, Ricci's Lemma, components, constancy	
IX.	Geo	desics	
	1.	Local characterisation	347
		Undeviating curves	
	2.	Geodesics from a point	352
		Completeness, exponential map, normal coordinates	
	3.	Global characterisation	360
		Criticality of length and energy, First Variation Formula	
	4.	Maxima, minima, uniqueness	372
		Saddle points, mirages, Twins 'Paradox'	
	5.	Geodesics in embedded manifolds	386
		Characterisation, examples	
	6.	An example of Lie group geometry	393
		2×2 matrices as a pseudo-Riemannian manifold	
х.	Cur	vature	415
	1.	Flat spaces	416
		Intrinsic description of local flatness	
	2.	The curvature tensor	423
		Properties and components	
	3.	Curved surfaces	446
		Gaussian curvature, Gauss-Bonnet Theorem	
	4.	Geodesic deviation	453
		Tidal effects in spacetime	
	5.	Sectional curvature	454
		Schur's Theorem, constant curvature	
	6.	Ricci and Einstein tensors	460
		Signs, geometry, Einstein manifolds, conservation equation	
	7.	Weyl tensor	471
		Vacuum curvature	

viii CONTENTS

XI.	Spe	cial Relativity	
	1.	Orienting spacetimes	475
		Causality, particle histories	
	2.	Motion in flat spacetime	478
		Inertial frames, momentum, rest mass, mass-energy	
	3.	Fields	490
		Matter tensor, conservation	
	4.	Forces	512
		No scalar potentials	
	5.	Gravitational red shift and curvature	515
		Measurement gives a curved metric tensor	
XII.	Gen	eral Relativity	
	1.	How geometry governs matter	519
		Equivalence principle, free fall	
	2.	What matter does to geometry	526
		Einstein's equation, shape of spacetime	
	3.	The stars in their courses	536
		Geometry of the solar system, Schwarzschild solution	
	4.	Farewell particle	553
Appendix :		Existence and Smoothness of Flows	556
		Completeness, fixed point theorems, uniform convergence,	
		solutions of differential equations, Inverse Function Theorem	
Diblica			580
Bibliog	grapi	ny .	360
Index o	Index of notations		582
Index	Index		