CONTENTS

THE A	UTH	ORS' PREFACE	xvii
THE T	RAN	SLATORS' AND EDITORS' PREFACE	xix
Cha	apter]	· I	
		INTRODUCTION	1
§1		lholm and Volterra equations	1
Ü	1.1	Fredholm equations	1
	1.2	Equations with a weak singularity	6
		Volterra equations	6
§2	Oth	er classes of integral equations	8
		Equations with convolution kernels	8
	2.2	The Wiener-Hopf equations	9
	2.3	Dual equations	9
	2.4	Integral transforms	10
	2.5	Singular integral equations	11
	2.6	Non-linear integral equations	12
§ 3	Som	e inversion formulas	14
	3.1	The inversion of integral transforms	15
	3.2	Inversion formulas for equations with convolution	
		kernels	17
	3.3	Volterra's equations with one independent variable and	
		a convolution kernel	20
	3.4	The Abel equation	20
	3.5	Integral equations with kernels defined by hyper-	
		geometric functions	22
Ch	apter	II	
THE F	RED	HOLM THEORY	26
§1	Basi	ic concepts and the Fredholm theorems	26
_	1.1	Basic concepts	26
	1.2		31
§2	The	solution of Fredholm equations: The method of succes-	
-	sive	approximation	33

		2.1 The construction of approximations: The Neumann	22
		series	33
		2.2 The resolvent kernel	35
	§3	The solution of Fredholm equations: Degenerate equations	20
		and the general case	37
		3.1 Equations with degenerate kernels	37
		3.2 The general case	40
	§4	The Fredholm resolvent	43
		4.1 The Fredholm resolvent	43
		4.2 Properties of the resolvent	44
	§5	The solution of Fredholm equations: The Fredholm series	44
		5.1 The Fredholm series. Fredholm determinants and	1
		minors	45
		5.2 The representation of the eigenfunctions of a kernel	
		in terms of the minors of Fredholm	47
	§6	Equations with a weak singularity	48
		6.1 Boundedness of the integral operator with a weak	
		singularity	48
		6.2 Iteration of a kernel with a weak singularity	49
		6.3 The method of successive approximation	49
	§7	Systems of integral equations	50
		7.1 The vector form for systems of integral equations	50
		7.2 Methods of solution for Fredholm kernels	50
	0.0	7.3 Methods of solution for kernels with a weak singularity	51
	§8	The structure of the resolvent in the neighbourhood of a	
		characteristic value	51
		8.1 Orthogonal kernels	51
		8.2 The principal kernels	52
		8.3 The canonical kernels	53
	§9	The rate of growth of eigenvalues	54
	Cha	pter III	
SYN		ETRIC EQUATIONS	57
~	§1	Basic properties	57
	3-	1.1 Symmetric kernels	57
		1.2 Basic theorems connected with symmetric kernels	58
		1.3 Systems of characteristic values and eigenfunctions	58
		1.4 Orthogonalization	58
	§2	The Hilbert-Schmidt series and its properties	59
	5 –	2.1 Hilbert-Schmidt theorem	59
		2.2 The solution of symmetric integral equations	60
		oranger or of minorio micograf oquations	υU

	2.3	The resolvent of a symmetric kernel	60
	2.4	The bilinear series of a kernel and its iterations	61
§3	The	classification of symmetric kernels	62
§4	Ext	remal properties of characteristic values and eigen-	
	func	ctions	62
§ 5	Sch	midt kernels and bilinear series for non-symmetric	
	keri	nels	64
§ 6	The	solution of integral equations of the first kind	65
	6.1	Symmetric equations	65
	6.2	Non-symmetric equations	66
	apter		
		EQUATIONS WITH NON-NEGATIVE KERNELS	68
§1		itive eigenvalues	68
		The formulation of the problem	68
		The kernels to be examined	68
		Existence of a positive eigenfunction	71
	1.4	1 1	71
	4.5	eigenvalues	71
	1.5		71
	1.6	Stochastic kernels	72
60	1.7	Notes	73
§2		itive solutions of the non-homogeneous equation	73
	2.1	•	73
	2.2		75
62	2.3	Note	75
§3		mates for the spectral radius	75
	3.1	Formulation of the problem	75
	3.2	• •	76
	3.3	\mathbf{c}	77
	3.4		78
C 4	3.5	Supplementary notes	79
§4		illating kernels	80
		The formulation of the problem	80
	4.2	S	80
	4.3		0.4
	A A	distribution of mass	81
	4.4	Oscillating kernels	83
	4.5		
		freedom	84

	apter		
CONTI	NUC	OUS AND COMPACT LINEAR OPERATORS	86
§ 1	Con	tinuity and compactness for linear integral operators	87
	1.1	The formulation of the problem	87
	1.2	Linear integral operators with their range in C	90
	1.3	General properties of integral operators in the	
		L_p -spaces	92
	1.4	L-characteristics of linear integral operators	94
		Linear U-bounded operators	95
		Linear U-cobounded operators	97
	1.7	Theorems with two conditions	98
	1.8	A subtle continuity and compactness condition	101
	1.9	Some particular classes of integral operators	102
		Additional notes	104
§ 2	_	ations of the second kind. The resolvent of an integral	
	-	rator	105
	2.1	The formulation of the problem	105
	2.2	*	106
		The space of kernels	108
	2.4	The resolvent of a linear integral operator	109
		The resolvent of 'improving' operators	111
	2.6	Conditions for unique solvability	111
	2.7	Equations with iterated kernels	112
	2.8	The conjugate equation	113
0.0	2.9	Supplementary notes	114
§3		ations of the second kind with compact operators in a	
		ach space	115
	3.1	T	115
		The spectrum of a compact operator	115
	3.3	The splitting of compact operators	117
	3.4	The spectrum of a compact integral operator	119
	3.5	Fredholm theorems	121
	3.6	The resolvent of a compact operator	122
	3.7	Equations with improving operators	123
0.4	3.8	Supplementary notes	124
§4	Equa	ations of the second kind with compact operators in a	
		ert space	124
	4.1	Preliminary notes	124
	4.2	Equations with self-adjoint operators	125
	4.3	The resolvent and the spectrum of a self-adjoint integral	
		operator	126

		4.4	Hilbert-Schmidt operators	128
		4.5	Mercer operators	130
		4.6	Self-adjoint operators with their range in a Banach	
			space	131
		4.7	Positive definite self-adjoint operators	132
		4.8	Hilbert-Schmidt decomposition for compact operators	134
	§5	Posi	itive operators	136
	•	5.1	Semi-ordered spaces	136
		5.2	General theorems relating to positive operators	136
		5.3	Estimates for the spectral radius	137
		5.4	The non-homogeneous equation	138
		5.5	Existence of an eigenvector	139
		5.6	Properties of the eigenvalue $\rho(K)$	139
		5.7		140
		5.8	Operators which leave a miniedral cone invariant	140
	§6	Volt	terra equations of the second kind	142
	-	6.1	The formulation of the problem	142
		6.2	Basic theorems	142
		6.3	Supplementary notes	143
	§7	Equ	ations of the first kind	144
		7.1	The formulation of the problem	144
		7.2	Equations in Hilbert space	144
		7.3	The regularization method	145
	Cha	apter	VI	
ON			NSIONAL SINGULAR EQUATIONS	149
	§1		ic notions	149
	0 –	1.1	The singular integral	149
		1.2	The singular Cauchy integral	153
		1.3	The singular Hilbert integral	154
	§2		ne properties of singular integrals	154
	0-	2.1	Assumptions about the contour	154
		2.2	On the existence of singular Cauchy integrals	155
		2.3		155
		2.4		157
		2.5		158
		2.6		158
	§3		gular operators in functional spaces	158
	3~	3.1		158
			On L	

	3.2 Invariant spaces	159
	3.3 Non-Liapunov contours	160
	3.4 Further theorems about invariant spaces	161
§ 4	Differentiation and integration formulas involving sing	gular
Ū	integrals	162
	4.1 Differentiation formulas	162
	4.2 Integration formulas	163
§5	Regularization	164
	5.1 Right and left regularization	164
	5.2 The index of an operator	165
§6	Closed contours; symbols; Nöther theorems	167
	6.1 The general singular operator	167
	6.2 The symbol of a singular operator	168
	6.3 Nöther theorems	169
	6.4 Singular equations with Hilbert kernels	170
	6.5 Supplementary notes	171
§7	The Carleman method for a closed contour	172
	7.1 Reduction of a singular equation to a boun	
	value problem	172
	7.2 The solution of the boundary value problem	174
§8	Systems of singular equations defined on a closed	
	contour	182
	8.1 The singular operator of a system	182
	8.2 The symbol	182
	8.3 Nöther theorems	183
§9	The open contour case	188
	9.1 Example	188
	9.2 The general case	190
	9.3 Supplementary notes	193
§10	Tricomi and Gellerstedt equations	194
	10.1 The formulation of the problem	194
	10.2 Reduction to a boundary value problem	195
	10.3 Solution of the homogeneous problem	197
	10.4 Solution of the non-homogeneous problem	197
§11	Equations with degenerate symbol	199
	11.1 Unbounded regularization	199
	11.2 The general singular equation	199
	11.3 Systems of singular equations	201
§12	Singular equations in generalized function spaces	202
	12.1 Equations with a non-degenerate symbol	203
	12.2 Equations with a degenerate symbol	204

		pter		
THE	IN	ITEG	RAL EQUATIONS OF MATHEMATICAL	
PHY	'SIC	S		205
	§1	The	integral equations of potential theory	205
		1.1	The integral equations of the Dirichlet and Neumann	
			problems, for simply connected boundaries	205
		1.2	The Robin problem	210
		1.3	The external Dirichlet problem	211
		1.4	The case of a disconnected boundary	212
		1.5	Mixed problems in potential theory	214
		1.6	The distribution of the characteristic values of the	
			integral equations of potential theory	215
		1.7	Extension to multi-dimensional spaces	215
	§2	The	application of complex variable to the problems of	
		pote	ntial theory in plane regions	217
		2.1	Dirichlet's problem for a simply connected plane	
			region	217
		2.2	Dirichlet's problem for multi-connected regions	219
		2.3	The Neumann problem	222
		2.4	The conformal mapping of multi-connected regions	224
		2.5	The Green's function and the Schwarz kernel	224
	§3	The	biharmonic equation and the plane problem in the	
		theo	ry of elasticity	227
		3.1	The application of Green's function. The formulation	
			and the study of the plane problem of the theory of	
			elasticity	227
		3.2	Simply connected regions	230
		3.3	Application of Cauchy-type integrals. Muskhelishvili's	
			equations	230
		3.4	Lauricella-Sherman equations	232
		3.5	Periodic problem of the theory of elasticity	233
		3.6	The characteristic values of the integral equations of the	
			theory of elasticity	234
	§4	Pote	ntials for the heat conduction equation	235
		4.1	Integral equations for heat conduction	235
		4.2	An examination of the integral equations of heat	
			potentials and the convergence of the method of	
			successive approximations	239
	§5	The	generalized Schwarz algorithm	240
	•	5.1	The general formulation and the convergence of the	
			algorithm for the plane problem of potential theory	240

		5.2	Application to three-dimensional problems	244
		5.3	Applications to the theory of elasticity	245
	§6	App	olication of the theory of symmetric integral equations	247
	_	6.1	The Sturm-Liouville problem	247
		6.2	The fundamental vibrations of a string	249
		6.3	The stability of a rod under compression	250
		6.4	The fundamental vibrations of a membrane	251
		6.5	The pressure of a rigid stamp on an elastic half-space	252
	§7	Cert	tain applications of singular integral equations	254
		7.1	Mixed problem of potential theory	254
		7.2	Mixed problems in the half-plane	255
		7.3	The problem of two elastic half-planes in contact	256
		7.4	The pressure of a rigid stamp on an elastic half-plane	257
		7.5	The mixed problem of the theory of elasticity	258
		7.6	The problem of flow past an arc of given shape	261
	~1			
		pter		
			EQUATIONS WITH CONVOLUTION KERNELS	263
,	§1		eral introduction	263
		1.1	The basic equation and special cases	263
		1.2	The symbol. Conditions for normal solvability	265
		1.3	Equations with elementary solutions	266
		1.4	Equations which reduce to the form (8.1)	270
		1.5	Function spaces	271
•	§2		mples	273
		2.1	The basic problem of the theory of radiation	273
		2.2	The problem of linear smoothing and forecasting	274
		2.3	The electromagnetic coastal effect	275
		2.4	A problem in the theory of hereditary elasticity	275
		2.5	The potential of a conducting disk	275
Ş	§3		ations defined on a semi-infinite interval with summable	
		kern	els	276
		3.1	The solvability conditions	276
		3.2	Factorization	278
		3.3	Solution of the non-homogeneous equation	280
		3.4		282
Ę	§4	Dua	l equations with summable kernels and their adjoints	283
		4.1	Reduction of the dual equation to an equivalent	•
			equation defined on a semi-infinite interval	283
		4.2	The formula for the index and properties of the basis	
			for the solutions of the homogeneous equation	284

		4.3	The equation adjoint to the dual	285
{			nples	286
Ę	§6	Dual	l equations with kernels of exponential type	291
		6.1	Reduction to a boundary value problem	291
		6.2	Case 1	293
		6.3	Case 2	295
Ę	§7	The	Wiener-Hopf method	298
		7.1	A description of the method	298
		7.2	The reduction of (8.14) to a boundary value problem	299
		7.3	An example	300
Ş	§8	Equa	ations with degenerate symbol	301
		8.1	The Riemann problem	301
		8.2	The Wiener-Hopf equation of the second kind	304
		8.3	The Wiener-Hopf equation of the first kind	305
		8.4	The dual equation of the second kind	306
_	•		nples	308
8	-	•	ems of equations on a semi-infinite interval	312
			The basic assumptions	312
			Factorization of matrix-functions	314
			The solvability conditions	315
			Dual equations	317
			Kernels with an exponential decay at infinity	319
Ę	•	_	ations defined on a finite interval	320
			Reduction to a boundary value problem	321
			Kernels with rational Fourier transforms	321
		11.3	Reduction to a differential equation with constant	
			coefficients	322
		11.4	Eigenvalues	323
(Chapt	or IX	7	
	_		NSIONAL SINGULAR EQUATIONS	329
			c concepts and theorems	329
	•	1.1	Notations	329
		1.2	The singular integral	330
		1.3	Existence conditions for singular integrals	331
8			symbol	333
2		2.1	The singular operator	333
		2.2	The symbol of a singular operator	334
			Formulas for the determination of the symbol	334
		2.4	Some new concepts	336
	•		~ ~ ~ ~ · · · · · · · · · · · · · · · ·	220

		2.5 variation in the symbol with respect to changes in the	
		independent variables	337
		2.6 An integral representation for the operator A in terms	
		of its symbol	337
	§3	Singular operators in $L_p(E_m)$	338
	_	3.1 Boundedness conditions for singular operators	338
		3.2 The decomposition of the simplest singular operator	
		into a series	340
		3.3 The multiplication rule for symbols	341
		3.4 The operator conjugate to a singular operator	341
	§ 4	Singular integrals over a manifold	341
		4.1 The definition of a singular operator and its symbol	341
		4.2 Another definition for the singular operator	343
	§5	Regularization and Fredholm theorems	343
	§6	Systems of singular equations	344
		6.1 Matrix singular operators	344
		6.2 The symbol matrix	345
		6.3 The index	345
	§7	Singular equations in Lipschitz spaces	348
	§8	Singular equations on a cylinder	350
	§9	Singular equations in spaces of generalized functions	352
	§10	Equations with degenerate symbol	354
	§11	Singular integro-differential equations	356
	§12	Singular equations on a manifold with boundary	357
	Chaj	pter X	
NC	N-LI	NEAR INTEGRAL EQUATIONS	360
	§ 1	Non-linear integral operators	360
		1.1 The basic concepts of the theory of non-linear	
		operators	360
		1.2 Urison operators with their range in the space C	363
		1.3 Hammerstein operators with range in L_q	366
		1.4 The continuity of Urison operators with range in L_q	368
		1.5 The complete continuity of Urison operators with	
		range in L_q	370
		1.6 Some special conditions	370
		1.7 Operators with range in L_{∞}	371
		1.8 Continuity and complete continuity for other types	
		of integral operators	373
		1.9 Derivatives of non-linear operators	374
		1.10 Derivatives of the Hammerstein operator	375

	1.11	Auxiliary theorems about superposition operators	378
	1.12	The differentiability of Urison operators	382
	1.13	Continuous differentiability of Urison operators	383
		Higher order derivatives	383
	1.15	Analytic operators	384
	1.16	Asymptotically linear operators	385
	1.17	Supplementary notes	388
§2	The	existence and uniqueness of solutions	388
	2.1	The formulation of the problem	388
	2.2	Equations with operators satisfying a Lipschitz condi-	
		tion	389
	2.3	Equations with completely continuous operators	391
	2.4	The use of upper estimates	393
	2.5	Equations with asymptotically linear operators	393
	2.6	Variational methods	394
	2.7	The existence of non-zero solutions	397
	2.8	The existence of a positive solution	398
	2.9	Equations with concave non-linearities	400
	2.10	Equations with a parameter	401
	2.11	Supplementary notes	404
§3	The	extension and bifurcation of solutions of non-linear	
	integ	gral equations	404
	3.1	The formulation of the problem	404
	3.2	<u> </u>	405
	3.3	Differential properties of an implicit function	406
	3.4	The analyticity of solutions	410
	3.5	The bifurcation equation	411
	3.6	The Nekrasov-Nazarov method	413
	3.7	The bifurcation points	416
	3.8	Supplementary notes about bifurcation points	419
REFER	ENC	ES	421
INDEX			439