Contents

		Page
Preface		v
	ATION OPERATOR h AND DIFFERENTIATION OPERATOR s ES OF HYPERFUNCTIONS: $^{\it C}$ AND $^{\it C}_{ m H}$)	1
Chapter I.	INTRODUCTION OF THE OPERATOR h THROUGH THE CONVOLUTION RING C	1
	 Convolution Ring Operator of Integration h 	1 3
Chapter II.	INTRODUCTION OF THE OPERATOR s THROUGH THE RING ${\it C}_{\rm H}$	5
	3. The Ring C_{H} and the Identity Operator I = h/h	5
	4. $C_{\rm H}$ as a Class of Generalized Functions of Hyperfunctions	8
	5. Operator of Differentiation s and Operator of Scalar Multiplication $[\alpha]$	9
	6. The Theorem $\frac{1}{s-[\alpha]} = e^{\alpha t}$	12
Chapter III.	LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS	14
	7. The Conversion of the Initial Value Problem for the Differential Equation into a Hyperfunction Equation	14
	8. The Polynomial Ring of Polynomials in s has no Zero Factors	15
	9. The Partial Fraction Decomposition of a Rational Function of s	18
	10. Hyperfunction Solution of the Ordinary Differential Equation (The Operational	22
	Calculus) 11. Boundary Value Problems for Ordinary Differential Equations	22 29
Chapter IV.	FRACTIONAL POWERS OF HYPERFUNCTIONS h, s AND $\frac{I}{s-\alpha}$	32
	12. Euler's Integrals - The Gamma Function and	
	Beta Function 13. Fractional Powers of h, of $(s-\alpha)^{-1}$, and of $(s-\alpha)$	32 34
Chapter V.	HYPERFUNCTIONS REPRESENTED BY INFINITE POWER SERIES IN h	39
	 14. The Binomial Theorem 15. Bessel's Function J_n(t) 	39 40

				Page
CHAPTER	v.	(cont.)		
		16.	Hyperfunctions Represented by Power Series in h	42
PART II.	LINEAR COEFFI	CIENT	INARY DIFFERENTIAL EQUATIONS WITH LINEAR IN (THE CLASS C/C OF HYPERFUNCTIONS)	47
CHAPTER	VI.		TITCHMARSH CONVOLUTION THEOREM AND THE	47
		17. 18.	Proof of the Titchmarsh Convolution Theorem The Class \mathcal{C}/\mathcal{C} of Hyperfunctions	47 50
CHAPTER	VII.		ALGEBRAIC DERIVATIVE APPLIED TO LAPLACE'S ERENTIAL EQUATION	53
		19. 20. 21.	The Algebraic Derivative Laplace's Differential Equation Supplements. I: Weierstrass' Polynomial Approximation Theorem. II: Mikusiński's	53 60
			Theorem of Moments	70
PART III.	SHIFT	OPER	ATOR exp($-\lambda$ s) AND DIFFUSION OPERATOR exp($-\lambda$ s ^{1/2})	74
			NENTIAL HYPERFUNCTIONS $exp(-\lambda s)$ AND $exp(-\lambda s^{1/2})$	74
		22.	Shift Operator $\exp(-\lambda s) = e^{-\lambda s}$. Function Space $K = K[0,\infty)$ Hyperfunction-Valued Function $f(\lambda)$ and	74
		23.	Generalized Derivative $\frac{d}{d\lambda} f(\lambda) = f'(\lambda)$	79
		24. 25.	Exponential Hyperfunction $exp(\lambda s) = e^{\lambda s}$ Examples of Generalized Limit. Power Series	83
			in $e^{\lambda s}$	86 92
		26.	$\int_{0}^{\infty} e^{-\lambda s} f(\lambda) d\lambda = \{f(t)\} \text{ For } \{f(t)\} \in C$ Exponential Hyperfunction $\exp(-\lambda s^{1/2}) = e^{-\lambda s^{1/2}}$ Logarithmic Hyperfunction w and Exponential	94
		27. 28.	Logarithmic Hyperfunction w and Exponential Hyperfunction exp(\lambda w)	99
PART IV.	APPLI	CATIC	ONS TO PARTIAL DIFFERENTIAL EQUATIONS	106
CHAPTER			DIMENSIONAL WAVE EQUATION	108
		29.	Hyperfunction Equation of the Form	
			D'Alembert's Method	108 113 118 122
		32.		
CHAPTER	X X.	TELE	EGRAPH EQUATION	124
		33.	The Hyperfunction Equation of the Telegraph Equation A Cable With Infinitely Small Loss	124 125
		34	A LANTE WITH THITHILETY SHALL DUSS	120

				Page		
CHAPTER	х.	(cont	(cont.)			
		35. 36.	Conductance Without Deformation The Thomson Cable	126 128		
			Concrete Representations of $\exp(-\lambda\sqrt{\alpha s} + \beta)$	132		
			A Cable Without Self-Induction	138		
			A Cable Without Leak-Conductance The Case Where All the Four Parameters Are	140		
			Positive	143		
CHAPTER :	XI.	HEAT	EQUATION	145		
			The Temperature of a Heat-Conducting Bar	145		
		42.	An Infinitely Long Bar	147		
		43. 44.	A Bar Without an Outgoing Flow of Heat The Temperature in a Bar with a Given Initial	149		
			Temperature	150		
				153		
		46.	Non-Insulated Heat Conduction	156		
ANSWERS TO	EXE	RCISES	5	157		
FORMULAS AND TABLES						
REFERENCES						
PROPOSITIONS AND THEOREMS IN SECTIONS						
INDEX				169		

/

